Value signals guide abstraction during learning

  1. Aurelio Cortese  Is a corresponding author
  2. Asuka Yamamoto
  3. Maryam Hashemzadeh
  4. Pradyumna Sepulveda
  5. Mitsuo Kawato
  6. Benedetto De Martino  Is a corresponding author
  1. ATR Institute International, Japan
  2. University of Alberta, Canada
  3. University College London, United Kingdom
  4. Advanced Telecommunications Research Institute International, Japan

Abstract

The human brain excels at constructing and using abstractions, such as rules, or concepts. Here, in two fMRI experiments, we demonstrate a mechanism of abstraction built upon the valuation of sensory features. Human volunteers learned novel association rules based on simple visual features. Reinforcement-learning algorithms revealed that, with learning, high-value abstract representations increasingly guided participant behaviour, resulting in better choices and higher subjective confidence. We also found that the brain area computing value signals - the ventromedial prefrontal cortex - prioritized and selected latent task elements during abstraction, both locally and through its connection to the visual cortex. Such a coding scheme predicts a causal role for valuation. Hence, in a second experiment, we used multivoxel neural reinforcement to test for the causality of feature valuation in the sensory cortex, as a mechanism of abstraction. Tagging the neural representation of a task feature with rewards evoked abstraction-based decisions. Together, these findings provide a novel interpretation of value as a goal-dependent, key factor in forging abstract representations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Aurelio Cortese

    Computational Neuroscience Laboratories, ATR Institute International, Soraku-gun, Japan
    For correspondence
    cortese.aurelio@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4567-0924
  2. Asuka Yamamoto

    Computational Neuroscience Laboratories, ATR Institute International, Soraku-gun, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Maryam Hashemzadeh

    Computer Science, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Pradyumna Sepulveda

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0159-6777
  5. Mitsuo Kawato

    Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetto De Martino

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    For correspondence
    benedettodemartino@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Science and Technology Agency (JPMJER1801)

  • Aurelio Cortese
  • Mitsuo Kawato

Japan Agency for Medical Research and Development (JP18dm0307008)

  • Aurelio Cortese
  • Mitsuo Kawato

Chilean National Agency for Research and Development (72180193)

  • Pradyumna Sepulveda

Wellcome Trust (102612/A/13/Z)

  • Benedetto De Martino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments and data analyses were conducted at the Advanced Telecommunications Research Institute International (ATR). The study was approved by the Institutional Review Board of ATR with ethics protocol numbers 18-122, 19-122, 20-122. All participants gave written informed consent.

Reviewing Editor

  1. Thorsten Kahnt, Northwestern University, United States

Version history

  1. Preprint posted: October 30, 2020 (view preprint)
  2. Received: March 30, 2021
  3. Accepted: July 12, 2021
  4. Accepted Manuscript published: July 13, 2021 (version 1)
  5. Version of Record published: August 3, 2021 (version 2)

Copyright

© 2021, Cortese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,914
    Page views
  • 520
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurelio Cortese
  2. Asuka Yamamoto
  3. Maryam Hashemzadeh
  4. Pradyumna Sepulveda
  5. Mitsuo Kawato
  6. Benedetto De Martino
(2021)
Value signals guide abstraction during learning
eLife 10:e68943.
https://doi.org/10.7554/eLife.68943

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Katja Heuer, Nicolas Traut ... Roberto Toro
    Research Article

    The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.