1. Neuroscience
Download icon

Value signals guide abstraction during learning

  1. Aurelio Cortese  Is a corresponding author
  2. Asuka Yamamoto
  3. Maryam Hashemzadeh
  4. Pradyumna Sepulveda
  5. Mitsuo Kawato
  6. Benedetto De Martino  Is a corresponding author
  1. ATR Institute International, Japan
  2. University of Alberta, Canada
  3. University College London, United Kingdom
  4. Advanced Telecommunications Research Institute International, Japan
Research Article
  • Cited 0
  • Views 369
  • Annotations
Cite this article as: eLife 2021;10:e68943 doi: 10.7554/eLife.68943

Abstract

The human brain excels at constructing and using abstractions, such as rules, or concepts. Here, in two fMRI experiments, we demonstrate a mechanism of abstraction built upon the valuation of sensory features. Human volunteers learned novel association rules based on simple visual features. Reinforcement-learning algorithms revealed that, with learning, high-value abstract representations increasingly guided participant behaviour, resulting in better choices and higher subjective confidence. We also found that the brain area computing value signals - the ventromedial prefrontal cortex - prioritized and selected latent task elements during abstraction, both locally and through its connection to the visual cortex. Such a coding scheme predicts a causal role for valuation. Hence, in a second experiment, we used multivoxel neural reinforcement to test for the causality of feature valuation in the sensory cortex, as a mechanism of abstraction. Tagging the neural representation of a task feature with rewards evoked abstraction-based decisions. Together, these findings provide a novel interpretation of value as a goal-dependent, key factor in forging abstract representations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Aurelio Cortese

    Computational Neuroscience Laboratories, ATR Institute International, Soraku-gun, Japan
    For correspondence
    cortese.aurelio@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4567-0924
  2. Asuka Yamamoto

    Computational Neuroscience Laboratories, ATR Institute International, Soraku-gun, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Maryam Hashemzadeh

    Computer Science, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Pradyumna Sepulveda

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0159-6777
  5. Mitsuo Kawato

    Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetto De Martino

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    For correspondence
    benedettodemartino@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Science and Technology Agency (JPMJER1801)

  • Aurelio Cortese
  • Mitsuo Kawato

Japan Agency for Medical Research and Development (JP18dm0307008)

  • Aurelio Cortese
  • Mitsuo Kawato

Chilean National Agency for Research and Development (72180193)

  • Pradyumna Sepulveda

Wellcome Trust (102612/A/13/Z)

  • Benedetto De Martino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments and data analyses were conducted at the Advanced Telecommunications Research Institute International (ATR). The study was approved by the Institutional Review Board of ATR with ethics protocol numbers 18-122, 19-122, 20-122. All participants gave written informed consent.

Reviewing Editor

  1. Thorsten Kahnt, Northwestern University, United States

Publication history

  1. Received: March 30, 2021
  2. Accepted: July 12, 2021
  3. Accepted Manuscript published: July 13, 2021 (version 1)

Copyright

© 2021, Cortese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 369
    Page views
  • 67
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Li Hou et al.
    Research Article Updated

    Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty-acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.

    1. Neuroscience
    Krishna N Badhiwala et al.
    Research Article

    Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra’s diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.