Abstract

Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by decreases in extracellular pH. The intracellular N and C terminal tails of ASIC1 influence channel gating, trafficking, and signaling in ischemic cell death. Despite several x-ray and cryo-EM structures of the extracellular and transmembrane segments of ASIC1, these important intracellular tails remain unresolved. Here we describe the coarse topography of the chicken ASIC1 intracellular domains determined by FRET, measured using either fluorescent lifetime imaging or patch clamp fluorometry. We find the C terminal tail projects into the cytosol by approximately 35 Å and that the N and C tail from the same subunits are closer than adjacent subunits. Using pH-insensitive fluorescent proteins, we fail to detect any relative movement between the N and C tails upon extracellular acidification but do observe axial motions of the membrane proximal segments towards the plasma membrane. Taken together, our study furnishes a coarse topographic map of the ASIC intracellular domains while providing directionality and context to intracellular conformational changes induced by extracellular acidification.

Data availability

All analyzed results contributing to this study are included in the manuscript and supporting files. Source data files have been provided for all figures containing data.

Article and author information

Author details

  1. Tyler Couch

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Berger

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dana L Kneisley

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tyler W McCullock

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1628-1102
  5. Paul Kammermeier

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Maclean

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    For correspondence
    David_MacLean@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-6075

Funding

National Institute of General Medical Sciences (R35GM137951)

  • David M Maclean

National Science Foundation

  • Tyler Couch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Couch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,222
    views
  • 175
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyler Couch
  2. Kyle Berger
  3. Dana L Kneisley
  4. Tyler W McCullock
  5. Paul Kammermeier
  6. David M Maclean
(2021)
Topography and motion of the acid-sensing ion channel intracellular domains
eLife 10:e68955.
https://doi.org/10.7554/eLife.68955

Share this article

https://doi.org/10.7554/eLife.68955

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.