Common virulence gene expression in adult first-time infected malaria patients and severe cases
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes to host endothelium through the parasite-derived PfEMP1 adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants conferring each parasite a similar array of human endothelial receptor binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum infected adult travelers returning to Germany. Patients were categorized into either malaria naïve (n=15) or pre-exposed (n=17), and into severe (n=8) or non-severe (n=24) cases. For differential expression analysis of PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naïve immune status and/or adverse inflammatory host responses to first infections favors growth of EPCR-binding parasites.
Data availability
Sequencing data have been deposited at NCBI under the BioProject accession number PRJNA679547.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (BA5213/3-1)
- Jan Stephan Wichers
- Anna Bachmann
Lundbeckfonden (R344-2020-934)
- Rasmus Weisel Jensen
- Louise Turner
- Thomas Lavstsen
Danish Council for Independent Research
- Rasmus Weisel Jensen
- Louise Turner
- Thomas Lavstsen
Deutsches Zentrum für Infektionsforschung (TTU Malaria)
- Ralf Krumkamp
- Egbert Tannich
- Rolf Fendel
- Anna Bachmann
Partnership of University of Hamburg and DESY (PIF-2018-87)
- Jan Strauss
- Tim Wolf Gilberger
State Graduate Funding Program Scholarship of the University of Hamburg
- Judith Anna Marie Scholz
National Health and Medical Research Council
- Michael Duffy
Wellcome Trust (104111/Z/14/ZR)
- Thomas D. Otto
Kirsten og Freddy Johansens Fond
- Rasmus Weisel Jensen
- Louise Turner
- Thomas Lavstsen
Læge Sophus Carl Emil Friis og hustru Olga Doris Friis' Legat
- Rasmus Weisel Jensen
- Louise Turner
- Thomas Lavstsen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The study was conducted according to the principles of the Declaration of Helsinki in its 6th revision as well as International Conference on Harmonization-Good Clinical Practice (ICH-GCP) guidelines. Blood samples for this analysis were collected after patients were informed about the aims and risks of the study and signed an informed consent form for voluntary blood draw (n=21). In the remaining cases, no designated blood samples were drawn, instead remains from diag-nostic blood samples were used (n=11). The study was approved by the relevant ethics committee (Ethical Review Board of the Medical Association of Hamburg, reference numbers PV3828 and PV4539).
Copyright
© 2021, Wichers et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,337
- views
-
- 285
- downloads
-
- 25
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
eLife has recently published a wide range of papers on malaria, covering a diversity of themes including parasite biology, epidemiology, immunology, drugs and vaccines.
-
- Chromosomes and Gene Expression
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12–15 hr, after which cells ‘adapt’ to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and maintain the arrest. Dun1 is required for the establishment, but not the maintenance, of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with two persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hr these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2’s binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest require overlapping but different sets of factors.