Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice
Abstract
Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.
Data availability
RNA sequencing data are available through GEO accession #GSE 184801All data generated or analysed during this study and required for conclusions to be drawn are included in the manuscript and supporting files.The upload can be identified at the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184801
-
Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female miceNCBI Gene Expression Omnibus, GSE184801.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R35 NS097306)
- Allan Basbaum
Open Philathropy
- Allan Basbaum
Pew Charitable Trusts
- Anna Molofsky
National Institute of Mental Health (R01MH119349)
- Anna Molofsky
National Institute of Mental Health (DP2MH116507)
- Anna Molofsky
Burroughs Wellcome Fund
- Anna Molofsky
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: As noted in the description of the mice used in this study:"All mouse experiments were approved by UCSF Institutional Animal Care and Use Committee and conducted in accordance with the guidelines established by the Institutional Animal Care and Use Committee and Laboratory Animal Resource Center."Please note that this is a renewal that occurred during the course of the revision to the manuscript.APPROVAL NUMBER: AN183265-02DApproval Date: June 15, 2021Expiration Date: February 26, 2022
Copyright
© 2021, Kuhn et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,828
- views
-
- 747
- downloads
-
- 62
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Attentional capture by an irrelevant salient distractor is attenuated when the distractor appears more frequently in one location, suggesting learned suppression of that location. However, it remains unclear whether suppression is proactive (before attention is directed) or reactive (after attention is allocated). Here, we investigated this using a ‘pinging’ technique to probe the attentional distribution before search onset. In an EEG experiment, participants searched for a shape singleton while ignoring a color singleton distractor at a high-probability location. To reveal the hidden attentional priority map, participants also performed a continuous recall spatial memory task, with a neutral placeholder display presented before search onset. Behaviorally, search was more efficient when the distractor appeared at the high-probability location. Inverted encoding analysis of EEG data showed tuning profiles that decayed during memory maintenance but were revived by the placeholder display. Notably, tuning was most pronounced at the to-be-suppressed location, suggesting initial spatial selection followed by suppression. These findings suggest that learned distractor suppression is a reactive process, providing new insights into learned spatial distractor suppression mechanisms.
-
- Neuroscience
The unexpected absence of danger constitutes a pleasurable event that is critical for the learning of safety. Accumulating evidence points to similarities between the processing of absent threat and the well-established reward prediction error (PE). However, clear-cut evidence for this analogy in humans is scarce. In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief. Furthermore, by parametrically violating participants’ probability and intensity related expectations of the upcoming stimulation, we showed for the first time in humans that omission-related activations in the VTA/SN were stronger following omissions of more probable and intense stimulations, like a positive reward PE signal. Together, our findings provide additional support for an overlap in the neural processing of absent danger and rewards in humans.