Pain: Why sex matters

The immune mechanisms underlying hypersensitivity to pain after nerve injury are different in male and female mice.
  1. Josette J Wlaschin
  2. Sangeetha Hareendran
  3. Claire E Le Pichon  Is a corresponding author
  1. Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, United States
  2. Department of Biology, Johns Hopkins University, United States

Pain cautions our bodies against harmful stimuli – such as a burning flame or the pointy end of a needle – and protects us when we are injured. These stimuli are detected by sensory neurons, which transmit signals to the spinal cord and brain. Damaging these neurons can lead to persistent and chronic pain, but the mechanisms underlying this are not fully understood.

One important player in controlling pain related to nerve damage is the immune system (Calvo et al., 2012; Scholz and Woolf, 2007). Previous work showed that injured sensory neurons release a protein called CSF1 (short for colony stimulating factor 1), which activates microglia, the main immune cell type in the brain and spinal cord. In this activated state, microglia proliferate, change their form and alter their behavior.

In 2016, a group of scientists discovered that male mice became hypersensitive to touch when their microglia were activated by nerve injury or by injecting CSF1 in to the space around the spinal cord (Guan et al., 2016). However, microglia have also been shown to be sexually dimorphic, playing different roles in disease and pain in males and females (Mogil, 2020). Now, in eLife, Allan Basbaum, Anna Molovsky and colleagues from the University of California, San Francisco – including Julia Kuhn and Ilia Vainchtein as co-first authors – report that microglia and another immune cell population respond differently to pain signals in male and female mice (Kuhn et al., 2021).

To investigate the mechanisms underlying hypersensitivity to touch, the team (which includes some of the researchers involved in the 2016 study) damaged the sciatic nerves of male and female mice lacking the gene for the CSF1 protein in their sensory neurons. Pain was assessed using the Von Frey assay, where mice are placed on an elevated grate and their paws are poked with different sized filaments (Decosterd and Woolf, 2000; Shields et al., 2003). Thick filaments will evoke a pain response that causes the mouse to flinch and withdraw its paw; whereas, thinner filaments only elicit this response when mice are hypersensitive to touch.

As shown previously, male mice deficient in CSF1 were not hypersensitive to touch after nerve injury. Female mice lacking CSF1, however, still withdrew their paws when poked with thinner filaments, suggesting that the mechanism underlying hypersensitivity in females is different to males. To confirm these findings, Kuhn et al. injected CSF1 near the spinal cord and assessed pain in the absence of nerve injury. As expected based on the previous results, the male mice became hypersensitive to touch, whereas the females did not (Figure 1). Further experiments examining the genes expressed by microglia after injection of CSF1 revealed that male mice upregulated different genes compared to females, including genes associated with disease, and the activation and recruitment of immune cells.

The differing effects of CSF1 injection on male and female mice.

When CSF1 is injected into wild-type mice, microglia in the spinal cord become activated (red cells) in male mice (top) but not females (middle). In females, regulatory T-cells (Tregs, blue circles) present in the membrane layers surrounding the spinal cord block CSF1 from activating microglia, which remain in the resting state (green cells); when regulatory T-cells are depleted (Treg KO; bottom), the microglia of female mice respond to CSF1 the same way as in males (bottom). During Von Frey pain assessment tests, female mice with depleted levels of regulatory T-cells and male mice exhibit the paw withdrawal response typical of hypersensitivity (top and bottom); however, female mice do not elicit a hypersensitive pain response. This indicates that regulatory T-cells suppress the activation of microglia and development of a pain response after CSF1 injection, but only in female mice.

Image credit: Figure created using Biorender.com.

Other types of immune cells are known to influence how the central nervous system works under both normal and diseased conditions. To see if any of these might be involved in female pain sensation, Kuhn et al. examined which immune cells were present in the membrane layers surrounding the spinal cords of mice injected with CSF1. Females were found to have more regulatory T-cells, which are potent inflammation suppressors. Kuhn et al. wondered if having a greater number of regulatory T-cells counteracts the effects of CSF1, so they repeated the experiments in female mice in which regulatory T-cells had been depleted. This revealed that without regulatory T-cells, female mice also develop hypersensitivity after CSF1 injection, and their microglia express a more similar pattern of genes to the microglia of males (Figure 1).

This study demonstrates that the immune system plays different roles in the pain pathways of male and female mice after nerve injury. In male mice, microglia are the major immune cell type driving pain induced by CSF1 injection, while regulatory T-cells repress this pathway in females. This work highlights the need to include males and females in scientific research, and the importance of considering sex-specific approaches for pain management. It also opens up interesting questions for future investigation. For example, it is unclear how regulatory T-cells are recruited in females after CSF1 injection, and the mechanisms underlying pain hypersensitivity in female mice remain to be discovered.

References

Article and author information

Author details

  1. Josette J Wlaschin

    Josette J Wlaschin is in the Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, Bethesda, and the Department of Biology, Johns Hopkins University, Baltimore, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1532-3905
  2. Sangeetha Hareendran

    Sangeetha Hareendran is in the Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, Bethesda, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9070-8023
  3. Claire E Le Pichon

    Claire E Le Pichon is in the Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, Bethesda, United States

    For correspondence
    claire.lepichon@nih.gov
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9274-3615

Publication history

  1. Version of Record published: December 2, 2021 (version 1)

Copyright

© 2021, Wlaschin et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,510
    views
  • 131
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josette J Wlaschin
  2. Sangeetha Hareendran
  3. Claire E Le Pichon
(2021)
Pain: Why sex matters
eLife 10:e74935.
https://doi.org/10.7554/eLife.74935
  1. Further reading

Further reading

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article

    Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.