Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olsen
  9. Paul Kievit
  10. Alan C Rupp
  11. Martin G Myers Jr  Is a corresponding author
  1. University of Michigan, United States
  2. Oregon National Primate Research Center, United States
  3. Novo Nordisk Research Center, United States

Abstract

The ventromedial hypothalamic nucleus (VMH) controls diverse behaviors and physiologic functions, suggesting the existence of multiple VMH neural subtypes with distinct functions. Combing Translating Ribosome Affinity Purification with RNA sequencing (TRAP-seq) data with snRNA-seq data, we identified 24 mouse VMH neuron clusters. Further analysis, including snRNA-seq data from macaque tissue, defined a more tractable VMH parceling scheme consisting of 6 major genetically- and anatomically-differentiated VMH neuron classes with good cross-species conservation. In addition to two major ventrolateral classes, we identified three distinct classes of dorsomedial VMH neurons. Consistent with previously-suggested unique roles for leptin receptor (Lepr)-expressing VMH neurons, Lepr expression marked a single dorsomedial class. We also identified a class of glutamatergic VMH neurons that resides in the tuberal region, anterolateral to the neuroanatomical core of the VMH. This atlas of conserved VMH neuron populations provides an unbiased starting point for the analysis of VMH circuitry and function.

Data availability

Sequencing data have been deposited in GEO under accession code GSE172207

The following data sets were generated

Article and author information

Author details

  1. Alison H Affinati

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Paul V Sabatini

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6613-566X
  3. Cadence True

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  4. Abigail J Tomlinson

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Melissa Kirigiti

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  6. Sarah R Lindsley

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  7. Chien Li

    Obesity, Novo Nordisk Research Center, Seattle, United States
    Competing interests
    Chien Li, is an employee of Novo Nordisk A/S.
  8. David P Olsen

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Paul Kievit

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  10. Alan C Rupp

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5363-4494
  11. Martin G Myers Jr

    Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046

Funding

National Institutes of Health (dk056731)

  • Martin G Myers Jr

Novo Nordisk

  • Martin G Myers Jr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ana Domingos, University of Oxford, United Kingdom

Ethics

Animal experimentation: All mice used in this study were maintained in accordance with University of Michigan Institutional Animal Care and Use Committee (IACUC), Association for the Assessment and Approval of Laboratory Animal Care (AAALAC) and National Institutes of Health (NIH) guidelines under protocol number PRO00007438 (PI Myers).Nonhuman primate tissue was obtained post-mortem from the Tissue Distribution Program at ONPRC. Animal care is in accordance with the recommendations described in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and animal facilities at the Oregon National Primate Research Center (ONPRC) are accredited by the American Association for Accreditation of Laboratory Animal Care International. ONPRC does not provide protocol numbers for security reasons.

Version history

  1. Received: April 2, 2021
  2. Accepted: May 14, 2021
  3. Accepted Manuscript published: May 21, 2021 (version 1)
  4. Accepted Manuscript updated: May 24, 2021 (version 2)
  5. Version of Record published: June 7, 2021 (version 3)

Copyright

© 2021, Affinati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,219
    views
  • 253
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olsen
  9. Paul Kievit
  10. Alan C Rupp
  11. Martin G Myers Jr
(2021)
Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations
eLife 10:e69065.
https://doi.org/10.7554/eLife.69065

Share this article

https://doi.org/10.7554/eLife.69065

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.