Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olson
  9. Paul Kievit
  10. Martin G Myers Jr  Is a corresponding author
  11. Alan C Rupp  Is a corresponding author
  1. University of Michigan, United States
  2. Oregon National Primate Research Center, United States
  3. Novo Nordisk Research Center, United States

Abstract

The ventromedial hypothalamic nucleus (VMH) controls diverse behaviors and physiologic functions, suggesting the existence of multiple VMH neural subtypes with distinct functions. Combing Translating Ribosome Affinity Purification with RNA sequencing (TRAP-seq) data with snRNA-seq data, we identified 24 mouse VMH neuron clusters. Further analysis, including snRNA-seq data from macaque tissue, defined a more tractable VMH parceling scheme consisting of 6 major genetically- and anatomically-differentiated VMH neuron classes with good cross-species conservation. In addition to two major ventrolateral classes, we identified three distinct classes of dorsomedial VMH neurons. Consistent with previously-suggested unique roles for leptin receptor (Lepr)-expressing VMH neurons, Lepr expression marked a single dorsomedial class. We also identified a class of glutamatergic VMH neurons that resides in the tuberal region, anterolateral to the neuroanatomical core of the VMH. This atlas of conserved VMH neuron populations provides an unbiased starting point for the analysis of VMH circuitry and function.

Data availability

Sequencing data have been deposited in GEO under accession code GSE172207

The following data sets were generated

Article and author information

Author details

  1. Alison H Affinati

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Paul V Sabatini

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6613-566X
  3. Cadence True

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  4. Abigail J Tomlinson

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Melissa Kirigiti

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  6. Sarah R Lindsley

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  7. Chien Li

    Obesity, Novo Nordisk Research Center, Seattle, United States
    Competing interests
    Chien Li, is an employee of Novo Nordisk A/S.
  8. David P Olson

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Paul Kievit

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  10. Martin G Myers Jr

    Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046
  11. Alan C Rupp

    Internal Medicine, University of Michigan, Ann Arbor, United States
    For correspondence
    ruppa@med.umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5363-4494

Funding

National Institutes of Health (dk056731)

  • Martin G Myers Jr

Novo Nordisk

  • Martin G Myers Jr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ana Domingos, University of Oxford, United Kingdom

Ethics

Animal experimentation: All mice used in this study were maintained in accordance with University of Michigan Institutional Animal Care and Use Committee (IACUC), Association for the Assessment and Approval of Laboratory Animal Care (AAALAC) and National Institutes of Health (NIH) guidelines under protocol number PRO00007438 (PI Myers).Nonhuman primate tissue was obtained post-mortem from the Tissue Distribution Program at ONPRC. Animal care is in accordance with the recommendations described in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and animal facilities at the Oregon National Primate Research Center (ONPRC) are accredited by the American Association for Accreditation of Laboratory Animal Care International. ONPRC does not provide protocol numbers for security reasons.

Version history

  1. Received: April 2, 2021
  2. Accepted: May 14, 2021
  3. Accepted Manuscript published: May 21, 2021 (version 1)
  4. Accepted Manuscript updated: May 24, 2021 (version 2)
  5. Version of Record published: June 7, 2021 (version 3)

Copyright

© 2021, Affinati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,202
    Page views
  • 250
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olson
  9. Paul Kievit
  10. Martin G Myers Jr
  11. Alan C Rupp
(2021)
Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations
eLife 10:e69065.
https://doi.org/10.7554/eLife.69065

Share this article

https://doi.org/10.7554/eLife.69065

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Neuroscience
    Hideo Hagihara, Hirotaka Shoji ... Tsuyoshi Miyakawa
    Research Article

    Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer’s disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.