Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olson
  9. Paul Kievit
  10. Martin G Myers Jr  Is a corresponding author
  11. Alan C Rupp  Is a corresponding author
  1. University of Michigan, United States
  2. Oregon National Primate Research Center, United States
  3. Novo Nordisk Research Center, United States

Abstract

The ventromedial hypothalamic nucleus (VMH) controls diverse behaviors and physiologic functions, suggesting the existence of multiple VMH neural subtypes with distinct functions. Combing Translating Ribosome Affinity Purification with RNA sequencing (TRAP-seq) data with snRNA-seq data, we identified 24 mouse VMH neuron clusters. Further analysis, including snRNA-seq data from macaque tissue, defined a more tractable VMH parceling scheme consisting of 6 major genetically- and anatomically-differentiated VMH neuron classes with good cross-species conservation. In addition to two major ventrolateral classes, we identified three distinct classes of dorsomedial VMH neurons. Consistent with previously-suggested unique roles for leptin receptor (Lepr)-expressing VMH neurons, Lepr expression marked a single dorsomedial class. We also identified a class of glutamatergic VMH neurons that resides in the tuberal region, anterolateral to the neuroanatomical core of the VMH. This atlas of conserved VMH neuron populations provides an unbiased starting point for the analysis of VMH circuitry and function.

Data availability

Sequencing data have been deposited in GEO under accession code GSE172207

The following data sets were generated

Article and author information

Author details

  1. Alison H Affinati

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Paul V Sabatini

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6613-566X
  3. Cadence True

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  4. Abigail J Tomlinson

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Melissa Kirigiti

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  6. Sarah R Lindsley

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  7. Chien Li

    Obesity, Novo Nordisk Research Center, Seattle, United States
    Competing interests
    Chien Li, is an employee of Novo Nordisk A/S.
  8. David P Olson

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Paul Kievit

    Oregon National Primate Research Center, Beaverton, United States
    Competing interests
    No competing interests declared.
  10. Martin G Myers Jr

    Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046
  11. Alan C Rupp

    Internal Medicine, University of Michigan, Ann Arbor, United States
    For correspondence
    ruppa@med.umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5363-4494

Funding

National Institutes of Health (dk056731)

  • Martin G Myers Jr

Novo Nordisk

  • Martin G Myers Jr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice used in this study were maintained in accordance with University of Michigan Institutional Animal Care and Use Committee (IACUC), Association for the Assessment and Approval of Laboratory Animal Care (AAALAC) and National Institutes of Health (NIH) guidelines under protocol number PRO00007438 (PI Myers).Nonhuman primate tissue was obtained post-mortem from the Tissue Distribution Program at ONPRC. Animal care is in accordance with the recommendations described in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and animal facilities at the Oregon National Primate Research Center (ONPRC) are accredited by the American Association for Accreditation of Laboratory Animal Care International. ONPRC does not provide protocol numbers for security reasons.

Copyright

© 2021, Affinati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,506
    views
  • 275
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alison H Affinati
  2. Paul V Sabatini
  3. Cadence True
  4. Abigail J Tomlinson
  5. Melissa Kirigiti
  6. Sarah R Lindsley
  7. Chien Li
  8. David P Olson
  9. Paul Kievit
  10. Martin G Myers Jr
  11. Alan C Rupp
(2021)
Cross-Species analysis defines the conservation of anatomically-segregated VMH neuron populations
eLife 10:e69065.
https://doi.org/10.7554/eLife.69065

Share this article

https://doi.org/10.7554/eLife.69065

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.