An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens

  1. Robert W Coukos
  2. David Yao
  3. Mateo Lopez Sanchez
  4. Eric T Strand
  5. Meagan E Olive
  6. Namrata D Udeshi
  7. Jonathan S Weissman
  8. Steven A Carr
  9. Michael C Bassik  Is a corresponding author
  10. Alice Y Ting  Is a corresponding author
  1. Stanford University, United States
  2. Broad Institute of MIT and Harvard, United States
  3. Whitehead Institute, United States

Abstract

The trafficking of specific protein cohorts to correct subcellular locations at correct times is essential for every signaling and regulatory process in biology. Gene perturbation screens could provide a powerful approach to probe the molecular mechanisms of protein trafficking, but only if protein localization or mislocalization can be tied to a simple and robust phenotype for cell selection, such as cell proliferation or fluorescence-activated cell sorting (FACS). To empower the study of protein trafficking processes with gene perturbation, we developed a genetically-encoded molecular tool named HiLITR. HiLITR converts protein colocalization into proteolytic release of a membrane-anchored transcription factor, which drives the expression of a chosen reporter gene. Using HiLITR in combination with FACS-based CRISPRi screening in human cell lines, we identified genes that influence the trafficking of mitochondrial and ER tail-anchored proteins. We show that loss of the SUMO E1 component SAE1 results in mislocalization and destabilization of many mitochondrial tail-anchored proteins. We also demonstrate a distinct regulatory role for EMC10 in the ER membrane complex, opposing the transmembrane-domain insertion activity of the complex. Through transcriptional integration of complex cellular functions, HiLITR expands the scope of biological processes that can be studied by genetic perturbation screening technologies.

Data availability

Lead contact: Further information and requests for resources or reagents should be directed to the lead contact, Alice Ting (ayting@stanford.edu)Materials availability: Plasmids generated in the study have been deposited to Addgene or are available upon request (Supplementary File 1)Data and code availability: HiLITR screen sequencing data has been deposited to Dryad (doi:10.5061/dryad.tb2rbp00n). The original mass spectra and the protein sequence database used for searches have been deposited in the public proteomics repository MassIVE (http://massive.ucsd.edu) and are accessible at ftp://massive.ucsd.edu/MSV000087769/.

The following data sets were generated
    1. Yao D
    (2021) HiLITR CRISPR screens
    https://creativecommons.org/publicdomain/zero/1.0/.

Article and author information

Author details

  1. Robert W Coukos

    Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7307-8293
  2. David Yao

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mateo Lopez Sanchez

    Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1359-6969
  4. Eric T Strand

    Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1488-1043
  5. Meagan E Olive

    Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Namrata D Udeshi

    Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan S Weissman

    Department of Biology, Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven A Carr

    Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael C Bassik

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    bassik@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5185-8427
  10. Alice Y Ting

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    ayting@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8277-5226

Funding

National Institute of Mental Health (MH119353)

  • Alice Y Ting

NIH Office of the Director (1DP2HD084069-01)

  • Michael C Bassik

National Science Foundation (1656518)

  • David Yao

Stanford Bio-X

  • Robert W Coukos

National Institute of Standards and Technology

  • Robert W Coukos

National Human Genome Research Institute (2T32HG000044)

  • Robert W Coukos
  • David Yao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Coukos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,041
    views
  • 878
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert W Coukos
  2. David Yao
  3. Mateo Lopez Sanchez
  4. Eric T Strand
  5. Meagan E Olive
  6. Namrata D Udeshi
  7. Jonathan S Weissman
  8. Steven A Carr
  9. Michael C Bassik
  10. Alice Y Ting
(2021)
An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens
eLife 10:e69142.
https://doi.org/10.7554/eLife.69142

Share this article

https://doi.org/10.7554/eLife.69142

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.