Role of direct and indirect social and spatial ties in the diffusion of HIV and HCV among people who inject drugs: A cross-sectional community-based network analysis in New Delhi, India

  1. Steven J Clipman  Is a corresponding author
  2. Shruti H Mehta
  3. Aylur K Srikrishnan
  4. Katie JC Zook
  5. Priya Duggal
  6. Shobha Mohapatra
  7. Saravanan Shanmugam
  8. Paneerselvam Nandagopal
  9. Muniratnam S Kumar
  10. Elizabeth Ogburn
  11. Gregory M Lucas
  12. Carl A Latkin
  13. Sunil S Solomon  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Johns Hopkins Bloomberg School of Public Health, United States
  3. YR Gaitonde Centre for AIDS Research and Education, India

Abstract

Background:People who inject drugs (PWID) account for some of the most explosive HIV and hepatitis C virus (HCV) epidemics globally. While individual drivers of infection are well understood, less is known about network factors, with minimal data beyond direct ties.

Methods:2,512 PWID in New Delhi, India were recruited in 2017-19 using a sociometric network design. Sampling was initiated with 10 indexes who recruited named injection partners (people who they injected with in the prior month). Each recruit then recruited their named injection partners following the same process with cross-network linkages established by biometric data. Participants responded to a survey, including information on injection locations, and provided a blood sample. Factors associated with HIV/HCV infection were identified using logistic regression.

Results:Median age was 26; 99% were male. Baseline HIV prevalence was 37.0% and 46.8% were actively infected with HCV (HCV RNA positive). The odds of prevalent HIV and active HCV infection decreased with each additional degree of separation from an infected alter (HIV AOR: 0.87; HCV AOR: 0.90) and increased among those who injected at a specific location (HIV AOR: 1.50; HCV AOR: 1.69) independent of individual-level factors (p<0.001). Additionally, sociometric factors e.g., network distance to an infected alter, were statistically significant predictors even when considering immediate egocentric ties.

Conclusions:These data demonstrate an extremely high burden of HIV and HCV infection and a highly interconnected injection and spatial network structure. Incorporating network and spatial data into the design/implementation of interventions may help interrupt transmission while improving efficiency.

Funding:National Institute on Drug Abuse and the Johns Hopkins University Center for AIDS Research.

Data availability

An interactive version of the sociospatial network and underlying data are available from: https://github.com/sclipman/sociospatial-baseline.

Article and author information

Author details

  1. Steven J Clipman

    Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    sclipman@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2366-8420
  2. Shruti H Mehta

    Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    Shruti H Mehta, reports personal fees from Gilead Sciences, outside the submitted work..
  3. Aylur K Srikrishnan

    YR Gaitonde Centre for AIDS Research and Education, Chennai, India
    Competing interests
    No competing interests declared.
  4. Katie JC Zook

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Priya Duggal

    Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Shobha Mohapatra

    YR Gaitonde Centre for AIDS Research and Education, Chennai, India
    Competing interests
    No competing interests declared.
  7. Saravanan Shanmugam

    YR Gaitonde Centre for AIDS Research and Education, Chennai, India
    Competing interests
    No competing interests declared.
  8. Paneerselvam Nandagopal

    YR Gaitonde Centre for AIDS Research and Education, Chennai, India
    Competing interests
    No competing interests declared.
  9. Muniratnam S Kumar

    YR Gaitonde Centre for AIDS Research and Education, Chennai, India
    Competing interests
    No competing interests declared.
  10. Elizabeth Ogburn

    Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Gregory M Lucas

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Carl A Latkin

    Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  13. Sunil S Solomon

    Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    sss@jhmi.edu
    Competing interests
    Sunil S Solomon, reports grants/products and advisory board fees from Gilead Sciences and grants/products from Abbott Diagnostics, outside the submitted work..

Funding

National Institute on Drug Abuse (R01DA041736)

  • Sunil S Solomon

National Institute on Drug Abuse (DP2DA040244)

  • Sunil S Solomon

National Institute on Drug Abuse (R01DA041034)

  • Shruti H Mehta
  • Gregory M Lucas

National Institute on Drug Abuse (K24DA035684)

  • Gregory M Lucas

National Institute of Allergy and Infectious Diseases (P30AI094189)

  • Shruti H Mehta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by institutional review boards at Johns Hopkins Medicine (IRB00110421) and the YR Gaitonde Centre for AIDS Research and Education in India (YRG292). All participants provided written informed consent.

Copyright

© 2021, Clipman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 994
    views
  • 110
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven J Clipman
  2. Shruti H Mehta
  3. Aylur K Srikrishnan
  4. Katie JC Zook
  5. Priya Duggal
  6. Shobha Mohapatra
  7. Saravanan Shanmugam
  8. Paneerselvam Nandagopal
  9. Muniratnam S Kumar
  10. Elizabeth Ogburn
  11. Gregory M Lucas
  12. Carl A Latkin
  13. Sunil S Solomon
(2021)
Role of direct and indirect social and spatial ties in the diffusion of HIV and HCV among people who inject drugs: A cross-sectional community-based network analysis in New Delhi, India
eLife 10:e69174.
https://doi.org/10.7554/eLife.69174

Share this article

https://doi.org/10.7554/eLife.69174

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article Updated

    Background:

    The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).

    Methods:

    Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.

    Results:

    Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).

    Conclusions:

    Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding:

    Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.