Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries

  1. Gabriela C Olivera
  2. Emily C Ross
  3. Christiane Peuckert
  4. Antonio Barragan  Is a corresponding author
  1. Stockholm University, Sweden
  2. Department of Molecular Biosciences, The Wenner-Gren Institute, Sweden

Abstract

The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gabriela C Olivera

    Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily C Ross

    Molecular Biosciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Christiane Peuckert

    Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Antonio Barragan

    Stockholm University, Stockholm, Sweden
    For correspondence
    antonio.barragan@su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7746-9964

Funding

Vetenskapsrådet (2018-02411)

  • Antonio Barragan

Olle Engkvist Foundation (193-609)

  • Antonio Barragan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sebastian Lourido, Whitehead Institute for Biomedical Research, United States

Ethics

Animal experimentation: All animal experimentation was approved by the Regional Animal Research Ethical Board, Stockholm, Sweden, (protocol numbers N135/15, 9707-2018 and 14458-2019), following proceedings described in EU legislation (Council Directive 2010/63/EU).

Version history

  1. Received: April 7, 2021
  2. Accepted: December 5, 2021
  3. Accepted Manuscript published: December 8, 2021 (version 1)
  4. Accepted Manuscript updated: December 9, 2021 (version 2)
  5. Version of Record published: December 23, 2021 (version 3)

Copyright

© 2021, Olivera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,169
    Page views
  • 308
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriela C Olivera
  2. Emily C Ross
  3. Christiane Peuckert
  4. Antonio Barragan
(2021)
Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries
eLife 10:e69182.
https://doi.org/10.7554/eLife.69182

Share this article

https://doi.org/10.7554/eLife.69182

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Cell Biology
    2. Immunology and Inflammation
    Cristina Cacho-Navas, Carmen López-Pujante ... Jaime Millán
    Research Article

    Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell–cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.