Tbx5 drives aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development

  1. Scott A Rankin
  2. Jeffrey D Steimle
  3. Xinan H Yang
  4. Ariel B Rydeen
  5. Kunal Agarwal
  6. Praneet Chaturvedi
  7. Kohta Ikegami
  8. Michael J Herriges
  9. Ivan P Moskowitz
  10. Aaron M Zorn  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. University of Chicago, United States

Abstract

The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA)-signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing cardiopulmonary evolution and birth defects.

Data availability

ChIP-seq data generated in this study is available from the Gene Expression Omnibus (GEO) accession number GSE167207.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Scott A Rankin

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey D Steimle

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xinan H Yang

    Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ariel B Rydeen

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kunal Agarwal

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Praneet Chaturvedi

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kohta Ikegami

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael J Herriges

    Department of Pediatrics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7842-9515
  9. Ivan P Moskowitz

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0014-4963
  10. Aaron M Zorn

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    aaron.zorn@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3217-3590

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (P01HD093363)

  • Aaron M Zorn

National Heart, Lung, and Blood Institute (R01HL092153)

  • Ivan P Moskowitz

National Heart, Lung, and Blood Institute (R01HL124836)

  • Ivan P Moskowitz

National Institute of General Medical Sciences (T32GM007183)

  • Jeffrey D Steimle

National Heart, Lung, and Blood Institute (T32HL007381)

  • Jeffrey D Steimle

National Heart, Lung, and Blood Institute (T32HL007381)

  • Ariel B Rydeen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse and Xenopus experiments were performed according to Institutional Animal Care and Use Committee (IACUC) protocols (University of Chicago protocol 71737; Cincinnati Children's Hospital protocol 2019-0053).

Copyright

© 2021, Rankin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,621
    views
  • 300
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott A Rankin
  2. Jeffrey D Steimle
  3. Xinan H Yang
  4. Ariel B Rydeen
  5. Kunal Agarwal
  6. Praneet Chaturvedi
  7. Kohta Ikegami
  8. Michael J Herriges
  9. Ivan P Moskowitz
  10. Aaron M Zorn
(2021)
Tbx5 drives aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development
eLife 10:e69288.
https://doi.org/10.7554/eLife.69288

Share this article

https://doi.org/10.7554/eLife.69288

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.

    1. Cell Biology
    2. Developmental Biology
    Deepak Adhikari, John Carroll
    Insight

    The formation of large endolysosomal structures in unfertilized eggs ensures that lysosomes remain dormant before fertilization, and then shift into clean-up mode after the egg-to-embryo transition.