mRNA vaccination in people over 80 years of age induces strong humoral immune responses against SARS-CoV-2 with cross neutralisation of P.1 Brazilian variant

  1. Helen Parry
  2. Gokhan Tut
  3. Rachel Bruton
  4. Sian Faustini
  5. Christine Stephens
  6. Philip Saunders
  7. Christopher Bentley
  8. Katherine Hilyard
  9. Kevin Brown
  10. Gayatri Amirthalingam
  11. Sue Charlton
  12. Stephanie Leung
  13. Emily Chiplin
  14. Naomi S Coombes
  15. Kevin R Bewley
  16. Elizabeth J Penn
  17. Cathy Rowe
  18. Ashley Otter
  19. Rosie Watts
  20. Silvia D'Arcangelo
  21. Bassam Hallis
  22. Andrew Makin
  23. Alex Richter
  24. Jianmin Zuo
  25. Paul Moss  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Quinton and Harborne PCN, United Kingdom
  3. Vaccine Taskforce, United Kingdom
  4. National infection Service, United Kingdom
  5. National Infection Service, United Kingdom
  6. Oxford Immunotec Ltd, United Kingdom

Abstract

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titres in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher respectively after dual vaccination. Post-vaccine sera mediated strong neutralisation of live Victoria infection and although neutralisation titres were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 Variant of Concern.

Data availability

All primary data are available at https://doi.org/10.5281/zenodo.4740081

Article and author information

Author details

  1. Helen Parry

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  2. Gokhan Tut

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  3. Rachel Bruton

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  4. Sian Faustini

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  5. Christine Stephens

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  6. Philip Saunders

    Quinton and Harborne PCN, Ridgacre House Surgery, Quinton, United Kingdom
    Competing interests
    No competing interests declared.
  7. Christopher Bentley

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  8. Katherine Hilyard

    Vaccine Taskforce, Department for Business, Energy and Industrial Strategy, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Kevin Brown

    National infection Service, Public Health England, Colindale, London NW9 5EQ, United Kingdom
    Competing interests
    No competing interests declared.
  10. Gayatri Amirthalingam

    National infection Service, Public Health England, Colindale, London NW9 5EQ, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sue Charlton

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  12. Stephanie Leung

    Research, National Infection Service, Salisbury, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8880-2977
  13. Emily Chiplin

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  14. Naomi S Coombes

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  15. Kevin R Bewley

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  16. Elizabeth J Penn

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  17. Cathy Rowe

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  18. Ashley Otter

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  19. Rosie Watts

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  20. Silvia D'Arcangelo

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  21. Bassam Hallis

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  22. Andrew Makin

    Oxford Immunotec Ltd, Abingdon, OX14 4SE, United Kingdom
    Competing interests
    Andrew Makin, is affiliated with Oxford Immunotec Ltd. The author has no financial interests to declare..
  23. Alex Richter

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  24. Jianmin Zuo

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  25. Paul Moss

    University of Birmingham, Birmingham, United Kingdom
    For correspondence
    p.moss@bham.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6895-1967

Funding

National Core Studies (Immunity programme)

  • Helen Parry
  • Gokhan Tut
  • Rachel Bruton
  • Sian Faustini
  • Christine Stephens
  • Paul Moss

UK Coronavirus Immunology Consortium (UKRI/DHSC)

  • Helen Parry
  • Gokhan Tut
  • Rachel Bruton
  • Sian Faustini
  • Christine Stephens
  • Paul Moss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained. The study was approved by UPH IRAS ethics 282164, Health Research Authority UK.

Reviewing Editor

  1. Jos W Van der Meer, Radboud University Medical Centre, Netherlands

Publication history

  1. Received: April 13, 2021
  2. Accepted: September 24, 2021
  3. Accepted Manuscript published: September 29, 2021 (version 1)
  4. Version of Record published: October 8, 2021 (version 2)

Copyright

© 2021, Parry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 957
    Page views
  • 91
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen Parry
  2. Gokhan Tut
  3. Rachel Bruton
  4. Sian Faustini
  5. Christine Stephens
  6. Philip Saunders
  7. Christopher Bentley
  8. Katherine Hilyard
  9. Kevin Brown
  10. Gayatri Amirthalingam
  11. Sue Charlton
  12. Stephanie Leung
  13. Emily Chiplin
  14. Naomi S Coombes
  15. Kevin R Bewley
  16. Elizabeth J Penn
  17. Cathy Rowe
  18. Ashley Otter
  19. Rosie Watts
  20. Silvia D'Arcangelo
  21. Bassam Hallis
  22. Andrew Makin
  23. Alex Richter
  24. Jianmin Zuo
  25. Paul Moss
(2021)
mRNA vaccination in people over 80 years of age induces strong humoral immune responses against SARS-CoV-2 with cross neutralisation of P.1 Brazilian variant
eLife 10:e69375.
https://doi.org/10.7554/eLife.69375
  1. Further reading

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Liselot Dewachter et al.
    Research Article

    Antibiotic resistance in the important opportunistic human pathogen Streptococcus pneumoniae is on the rise. This is particularly problematic in the case of the β-lactam antibiotic amoxicillin, which is the first-line therapy. It is therefore crucial to uncover targets that would kill or resensitize amoxicillin-resistant pneumococci. To do so, we developed a genome-wide, single-cell based, gene silencing screen using CRISPR interference called sCRilecs-seq (subsets of CRISPR interference libraries extracted by fluorescence activated cell sorting coupled to next generation sequencing). Since amoxicillin affects growth and division, sCRilecs-seq was used to identify targets that are responsible for maintaining proper cell size. Our screen revealed that downregulation of the mevalonate pathway leads to extensive cell elongation. Further investigation into this phenotype indicates that it is caused by a reduced availability of cell wall precursors at the site of cell wall synthesis due to a limitation in the production of undecaprenyl phosphate (Und-P), the lipid carrier that is responsible for transporting these precursors across the cell membrane. The data suggest that, whereas peptidoglycan synthesis continues even with reduced Und-P levels, cell constriction is specifically halted. We successfully exploited this knowledge to create a combination treatment strategy where the FDA-approved drug clomiphene, an inhibitor of Und-P synthesis, is paired up with amoxicillin. Our results show that clomiphene potentiates the antimicrobial activity of amoxicillin and that combination therapy resensitizes amoxicillin-resistant S. pneumoniae. These findings could provide a starting point to develop a solution for the increasing amount of hard-to-treat amoxicillin-resistant pneumococcal infections.

    1. Microbiology and Infectious Disease
    Dallas L Mould et al.
    Research Article Updated

    Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function (LOF) mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.