Information transfer in mammalian glycan-based communication

  1. Felix F Fuchsberger
  2. Dongyoon Kim
  3. Natalia Baranova
  4. Hanka Vrban
  5. Marten Kagelmacher
  6. Robert Wawrzinek
  7. Christoph Rademacher  Is a corresponding author
  1. University of Vienna, Austria
  2. Max Planck Institute of Colloids and Interfaces, Germany

Abstract

Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used NF-κB-reporter cell lines expressing DC-SIGN, MCL, dectin-1, dectin-2, and mincle, as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors did transmit information with similar signaling capacity, except dectin-2. This lectin was identified to less efficient in information transmission compared to the other CTLs and even while the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation towards the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) are being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins and therefore the findings provide insight into how immune cells translate glycan information using multivalent interactions.

Data availability

We have uploaded the raw data of the study to Dryad and updated it during the revision process. https://doi.org/10.5061/dryad.tx95x69xqOur scripts for data evaluation are also linked to GitHub and stated in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Felix F Fuchsberger

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Dongyoon Kim

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Natalia Baranova

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanka Vrban

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Marten Kagelmacher

    Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Wawrzinek

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Christoph Rademacher

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    For correspondence
    Christoph.rademacher@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-7239

Funding

European Research Council (716024)

  • Marten Kagelmacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Fuchsberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,461
    views
  • 264
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix F Fuchsberger
  2. Dongyoon Kim
  3. Natalia Baranova
  4. Hanka Vrban
  5. Marten Kagelmacher
  6. Robert Wawrzinek
  7. Christoph Rademacher
(2023)
Information transfer in mammalian glycan-based communication
eLife 12:e69415.
https://doi.org/10.7554/eLife.69415

Share this article

https://doi.org/10.7554/eLife.69415

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John Yong, Jacqueline E Villalta ... Calvin H Jan
    Research Article

    Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.