Information transfer in mammalian glycan-based communication

  1. Felix F Fuchsberger
  2. Dongyoon Kim
  3. Natalia Baranova
  4. Hanka Vrban
  5. Marten Kagelmacher
  6. Robert Wawrzinek
  7. Christoph Rademacher  Is a corresponding author
  1. University of Vienna, Austria
  2. Max Planck Institute of Colloids and Interfaces, Germany

Abstract

Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used NF-κB-reporter cell lines expressing DC-SIGN, MCL, dectin-1, dectin-2, and mincle, as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors did transmit information with similar signaling capacity, except dectin-2. This lectin was identified to less efficient in information transmission compared to the other CTLs and even while the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation towards the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) are being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins and therefore the findings provide insight into how immune cells translate glycan information using multivalent interactions.

Data availability

We have uploaded the raw data of the study to Dryad and updated it during the revision process. https://doi.org/10.5061/dryad.tx95x69xqOur scripts for data evaluation are also linked to GitHub and stated in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Felix F Fuchsberger

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Dongyoon Kim

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Natalia Baranova

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanka Vrban

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Marten Kagelmacher

    Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Wawrzinek

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Christoph Rademacher

    Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
    For correspondence
    Christoph.rademacher@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-7239

Funding

European Research Council (716024)

  • Marten Kagelmacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andre Levchenko, Yale University, United States

Version history

  1. Received: April 14, 2021
  2. Preprint posted: May 10, 2021 (view preprint)
  3. Accepted: February 19, 2023
  4. Accepted Manuscript published: February 20, 2023 (version 1)
  5. Version of Record published: March 14, 2023 (version 2)
  6. Version of Record updated: March 31, 2023 (version 3)

Copyright

© 2023, Fuchsberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,247
    views
  • 238
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix F Fuchsberger
  2. Dongyoon Kim
  3. Natalia Baranova
  4. Hanka Vrban
  5. Marten Kagelmacher
  6. Robert Wawrzinek
  7. Christoph Rademacher
(2023)
Information transfer in mammalian glycan-based communication
eLife 12:e69415.
https://doi.org/10.7554/eLife.69415

Share this article

https://doi.org/10.7554/eLife.69415

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.