circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang  Is a corresponding author
  1. School of Basic Medical Sciences, Peking University Health Science Center, China
  2. Chinese Institute for Brain Research, Beijing, China

Abstract

Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription (RCRT) and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.

Data availability

The circFL-seq and RNA-seq data produced by this study have been deposited in SRA (PRJNA722575). The information of circRNAs detected by circFL-seq is available in the figshare repository (https://doi.org/10.6084/m9.figshare.14265650.v1). The computational software circfull can be accessed from https://github.com/yangence/circfull.

The following data sets were generated
    1. Liu ZL
    (2021) circRNA_circFL_table.xlsx
    Figureshare, doi.org/10.6084/m9.figshare.14265650.v1.
The following previously published data sets were used

Article and author information

Author details

  1. Zelin Liu

    Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3516-3999
  2. Changyu Tao

    Department of Human Anatomy, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiwei Li

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Minghao Du

    Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongtai Bai

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xueyan Hu

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Li

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Chen

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ence Yang

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    For correspondence
    yangence@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9526-2737

Funding

Beijing Municipal Science and Technology Commission of China (7212065,Z181100001518005)

  • Ence Yang

Chinese Institute for Brain Research, Beijing (2020-NKX-XM-01)

  • Ence Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gene W Yeo, University of California, San Diego, United States

Version history

  1. Received: April 15, 2021
  2. Preprint posted: July 5, 2021 (view preprint)
  3. Accepted: October 13, 2021
  4. Accepted Manuscript published: October 14, 2021 (version 1)
  5. Version of Record published: October 26, 2021 (version 2)

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,679
    views
  • 447
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang
(2021)
circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing
eLife 10:e69457.
https://doi.org/10.7554/eLife.69457

Share this article

https://doi.org/10.7554/eLife.69457

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.