circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang  Is a corresponding author
  1. School of Basic Medical Sciences, Peking University Health Science Center, China
  2. Chinese Institute for Brain Research, Beijing, China

Abstract

Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription (RCRT) and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.

Data availability

The circFL-seq and RNA-seq data produced by this study have been deposited in SRA (PRJNA722575). The information of circRNAs detected by circFL-seq is available in the figshare repository (https://doi.org/10.6084/m9.figshare.14265650.v1). The computational software circfull can be accessed from https://github.com/yangence/circfull.

The following data sets were generated
    1. Liu ZL
    (2021) circRNA_circFL_table.xlsx
    Figureshare, doi.org/10.6084/m9.figshare.14265650.v1.
The following previously published data sets were used

Article and author information

Author details

  1. Zelin Liu

    Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3516-3999
  2. Changyu Tao

    Department of Human Anatomy, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiwei Li

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Minghao Du

    Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongtai Bai

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xueyan Hu

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Li

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Chen

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ence Yang

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    For correspondence
    yangence@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9526-2737

Funding

Beijing Municipal Science and Technology Commission of China (7212065,Z181100001518005)

  • Ence Yang

Chinese Institute for Brain Research, Beijing (2020-NKX-XM-01)

  • Ence Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,979
    views
  • 465
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang
(2021)
circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing
eLife 10:e69457.
https://doi.org/10.7554/eLife.69457

Share this article

https://doi.org/10.7554/eLife.69457

Further reading

    1. Chromosomes and Gene Expression
    Daphne R Knudsen-Palmer, Pravrutha Raman ... Antony M Jose
    Research Article

    Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode Caenorhabditis elegans can selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within ‘pUG zones’ matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.

    1. Chromosomes and Gene Expression
    Shuvra Shekhar Roy, Sulochana Bagri ... Shantanu Chowdhury
    Research Article

    Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.