circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang  Is a corresponding author
  1. School of Basic Medical Sciences, Peking University Health Science Center, China
  2. Chinese Institute for Brain Research, Beijing, China

Abstract

Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription (RCRT) and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.

Data availability

The circFL-seq and RNA-seq data produced by this study have been deposited in SRA (PRJNA722575). The information of circRNAs detected by circFL-seq is available in the figshare repository (https://doi.org/10.6084/m9.figshare.14265650.v1). The computational software circfull can be accessed from https://github.com/yangence/circfull.

The following data sets were generated
    1. Liu ZL
    (2021) circRNA_circFL_table.xlsx
    Figureshare, doi.org/10.6084/m9.figshare.14265650.v1.
The following previously published data sets were used

Article and author information

Author details

  1. Zelin Liu

    Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3516-3999
  2. Changyu Tao

    Department of Human Anatomy, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiwei Li

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Minghao Du

    Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongtai Bai

    Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xueyan Hu

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Li

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Chen

    Chinese Institute for Brain Research, Chinese Institute for Brain Research, Beijing, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ence Yang

    Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    For correspondence
    yangence@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9526-2737

Funding

Beijing Municipal Science and Technology Commission of China (7212065,Z181100001518005)

  • Ence Yang

Chinese Institute for Brain Research, Beijing (2020-NKX-XM-01)

  • Ence Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,127
    views
  • 482
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zelin Liu
  2. Changyu Tao
  3. Shiwei Li
  4. Minghao Du
  5. Yongtai Bai
  6. Xueyan Hu
  7. Yu Li
  8. Jian Chen
  9. Ence Yang
(2021)
circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing
eLife 10:e69457.
https://doi.org/10.7554/eLife.69457

Share this article

https://doi.org/10.7554/eLife.69457

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.