Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia

  1. Xiaohui Yan
  2. Ke Jiang
  3. Hui Li
  4. Ziyi Wang
  5. Kyle Perkins
  6. Fan Cao  Is a corresponding author
  1. Sun Yat-sen University, China
  2. Sun Yat-Sen University, China
  3. Anyang Preschool Education College, China
  4. Jining University, China
  5. Florida International University, United States

Abstract

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Meta-analysis data is deposited to Dryad.

The following data sets were generated
    1. Yan X
    (2021) meta-analysis data
    Dryad Digital Repository, doi:10.5061/dryad.0p2ngf222.

Article and author information

Author details

  1. Xiaohui Yan

    Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ke Jiang

    Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Li

    Anyang Preschool Education College, Anyang, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ziyi Wang

    Jining University, Jining, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyle Perkins

    Florida International University, Florida, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Cao

    Sun Yat-sen University, Guangzhou, China
    For correspondence
    caofan3@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3786-1600

Funding

Fundamental Research Funds for the Central Universities

  • Fan Cao

Guangdong Planning Office of Philosophy and Social Science (GD19CXL05)

  • Fan Cao

Science and Technology Program of Guangzhou, China, Key Area Research and Development Program (202007030011)

  • Fan Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ruth de Diego-Balaguer, Universitat de Barcelona, Spain

Version history

  1. Received: April 17, 2021
  2. Preprint posted: May 10, 2021 (view preprint)
  3. Accepted: September 24, 2021
  4. Accepted Manuscript published: September 27, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Yan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,764
    views
  • 266
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaohui Yan
  2. Ke Jiang
  3. Hui Li
  4. Ziyi Wang
  5. Kyle Perkins
  6. Fan Cao
(2021)
Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia
eLife 10:e69523.
https://doi.org/10.7554/eLife.69523

Share this article

https://doi.org/10.7554/eLife.69523

Further reading

    1. Neuroscience
    Zahid Padamsey, Danai Katsanevaki ... Nathalie L Rochefort
    Research Article

    Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.