1. Neuroscience
Download icon

Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia

  1. Xiaohui Yan
  2. Ke Jiang
  3. Hui Li
  4. Ziyi Wang
  5. Kyle Perkins
  6. Fan Cao  Is a corresponding author
  1. Sun Yat-sen University, China
  2. Sun Yat-Sen University, China
  3. Anyang Preschool Education College, China
  4. Jining University, China
  5. Florida International University, United States
Research Article
  • Cited 0
  • Views 376
  • Annotations
Cite this article as: eLife 2021;10:e69523 doi: 10.7554/eLife.69523

Abstract

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Meta-analysis data is deposited to Dryad.

The following data sets were generated
    1. Yan X
    (2021) meta-analysis data
    Dryad Digital Repository, doi:10.5061/dryad.0p2ngf222.

Article and author information

Author details

  1. Xiaohui Yan

    Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ke Jiang

    Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Li

    Anyang Preschool Education College, Anyang, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ziyi Wang

    Jining University, Jining, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyle Perkins

    Florida International University, Florida, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Cao

    Sun Yat-sen University, Guangzhou, China
    For correspondence
    caofan3@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3786-1600

Funding

Fundamental Research Funds for the Central Universities

  • Fan Cao

Guangdong Planning Office of Philosophy and Social Science (GD19CXL05)

  • Fan Cao

Science and Technology Program of Guangzhou, China, Key Area Research and Development Program (202007030011)

  • Fan Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ruth de Diego-Balaguer, Universitat de Barcelona, Spain

Publication history

  1. Received: April 17, 2021
  2. Preprint posted: May 10, 2021 (view preprint)
  3. Accepted: September 24, 2021
  4. Accepted Manuscript published: September 27, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Yan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 376
    Page views
  • 74
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.

    1. Neuroscience
    Shankar Ramachandran et al.
    Research Article Updated

    Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.