A precisely adjustable, variation-suppressed eukaryotic transcriptional controller to enable genetic discovery

  1. Asli Azizoglu  Is a corresponding author
  2. Roger Brent  Is a corresponding author
  3. Fabian Rudolf  Is a corresponding author
  1. ETH Zurich, Switzerland
  2. Fred Hutchinson Cancer Research Center, United States

Abstract

Conditional expression of genes and observation of phenotype remain central to biological discovery. Current methods enable either on/off or imprecisely controlled graded gene expression. We developed a 'well-tempered' controller, WTC846, for precisely adjustable, graded, growth condition independent expression of genes in Saccharomyces cerevisiae. Controlled genes are expressed from a strong semisynthetic promoter repressed by the prokaryotic TetR, which also represses its own synthesis; with basal expression abolished by a second, 'zeroing' repressor. The autorepression loop lowers cell-to-cell variation while enabling precise adjustment of protein expression by a chemical inducer. WTC846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes (CDC42, TPI1), exhibited novel overexpression phenotypes (IPL1), showed protein dosage-dependent growth rates and morphological phenotypes (CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1), and enabled cell cycle synchronization (CDC20). WTC846 defines an 'expression clamp' allowing protein dosage to be adjusted by the experimenter across the range of cellular protein abundances, with limited variation around the setpoint.

Data availability

All relevant sequences are included in the supporting files for reproducibility. All raw flow cytometry data is publicly available at doi.org/10.3929/ethz-b-000488967. All other source data is included in the manuscript and supporting files.

Article and author information

Author details

  1. Asli Azizoglu

    BSSE, ETH Zurich, Basel, Switzerland
    For correspondence
    asli.azizoglu@bsse.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Roger Brent

    Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    rbrent@fhcrc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8398-3273
  3. Fabian Rudolf

    D-BSSE, ETH Zurich, Basel, Switzerland
    For correspondence
    fabian.rudolf@bsse.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR Molecular Systems Engineering)

  • Asli Azizoglu
  • Fabian Rudolf

National Cancer Institute (R21CA223901)

  • Roger Brent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: April 19, 2021
  2. Accepted: August 2, 2021
  3. Accepted Manuscript published: August 3, 2021 (version 1)
  4. Version of Record published: September 6, 2021 (version 2)

Copyright

© 2021, Azizoglu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,315
    Page views
  • 243
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asli Azizoglu
  2. Roger Brent
  3. Fabian Rudolf
(2021)
A precisely adjustable, variation-suppressed eukaryotic transcriptional controller to enable genetic discovery
eLife 10:e69549.
https://doi.org/10.7554/eLife.69549

Share this article

https://doi.org/10.7554/eLife.69549

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.