Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues

Abstract

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug's action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients' TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients' native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence (mIF), and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Excel spreadsheets of data used for tables and figures will be deposited at Dryad.

The following data sets were generated

Article and author information

Author details

  1. Teresa Fan

    University of Kentucky, LEXINGTON, United States
    For correspondence
    teresa.fan@uky.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-8938
  2. Richard M Higashi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huan Song

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Saeed Daneshmandi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela L Mahan

    Baptist Health, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew S Purdom

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Therese J Bocklage

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Pittman

    Department of Neurosurgery, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daheng He

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chi Wang

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew N Lane

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    For correspondence
    andrew.lane@uky.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Surgical patients were consented for freshly resected tissue specimens under the approved IRB protocol (14-0288-F6A; 13-LUN-94-MCC) of the University of Kentucky (UKy).

Copyright

© 2021, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,370
    views
  • 211
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa Fan
  2. Richard M Higashi
  3. Huan Song
  4. Saeed Daneshmandi
  5. Angela L Mahan
  6. Matthew S Purdom
  7. Therese J Bocklage
  8. Thomas A Pittman
  9. Daheng He
  10. Chi Wang
  11. Andrew N Lane
(2021)
Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues
eLife 10:e69578.
https://doi.org/10.7554/eLife.69578

Share this article

https://doi.org/10.7554/eLife.69578

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.