Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues

Abstract

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug's action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients' TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients' native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence (mIF), and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Excel spreadsheets of data used for tables and figures will be deposited at Dryad.

The following data sets were generated

Article and author information

Author details

  1. Teresa Fan

    University of Kentucky, LEXINGTON, United States
    For correspondence
    teresa.fan@uky.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-8938
  2. Richard M Higashi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huan Song

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Saeed Daneshmandi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela L Mahan

    Baptist Health, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew S Purdom

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Therese J Bocklage

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Pittman

    Department of Neurosurgery, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daheng He

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chi Wang

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew N Lane

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    For correspondence
    andrew.lane@uky.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Surgical patients were consented for freshly resected tissue specimens under the approved IRB protocol (14-0288-F6A; 13-LUN-94-MCC) of the University of Kentucky (UKy).

Reviewing Editor

  1. Fabio Malavasi, University of Torino Medical School, Italy

Version history

  1. Received: April 20, 2021
  2. Accepted: July 26, 2021
  3. Accepted Manuscript published: August 18, 2021 (version 1)
  4. Accepted Manuscript updated: August 20, 2021 (version 2)
  5. Accepted Manuscript updated: August 31, 2021 (version 3)
  6. Version of Record published: September 27, 2021 (version 4)

Copyright

© 2021, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,274
    Page views
  • 200
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa Fan
  2. Richard M Higashi
  3. Huan Song
  4. Saeed Daneshmandi
  5. Angela L Mahan
  6. Matthew S Purdom
  7. Therese J Bocklage
  8. Thomas A Pittman
  9. Daheng He
  10. Chi Wang
  11. Andrew N Lane
(2021)
Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues
eLife 10:e69578.
https://doi.org/10.7554/eLife.69578

Share this article

https://doi.org/10.7554/eLife.69578

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Pengfei Guo, Rebecca C. Lim ... Hui Zhang
    Research Article

    The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to control the PRC2 activity and hematopoiesis.

    1. Cancer Biology
    Shakur Mohibi, Yanhong Zhang ... Xinbin Chen
    Research Article Updated

    Mammalian ferredoxin 1 and 2 (FDX1/2) belong to an evolutionary conserved family of iron-sulfur cluster containing proteins and act as electron shutters between ferredoxin reductase (FDXR) and numerous proteins involved in critical biological pathways. FDX1 is involved in biogenesis of steroids and bile acids, Vitamin A/D metabolism, and lipoylation of tricarboxylic acid (TCA) cycle enzymes. FDX1 has been extensively characterized biochemically but its role in physiology and lipid metabolism has not been explored. In this study, we generated Fdx1-deficient mice and showed that knockout of both alleles of the Fdx1 gene led to embryonic lethality. We also showed that like Fdxr+/-+/-, Fdx1+/-+/- had a shorter life span and were prone to steatohepatitis. However, unlike Fdxr+/-+/-, Fdx1+/-+/- were not prone to spontaneous tumors. Additionally, we showed that FDX1 deficiency led to lipid droplet accumulation possibly via the ABCA1-SREBP1/2 pathway. Specifically, untargeted lipidomic analysis showed that FDX1 deficiency led to alterations in several classes of lipids, including cholesterol, triacylglycerides, acylcarnitines, ceramides, phospholipids and lysophospholipids. Taken together, our data indicate that FDX1 is essential for mammalian embryonic development and lipid homeostasis at both cellular and organismal levels.