Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues

Abstract

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug's action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients' TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients' native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence (mIF), and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Excel spreadsheets of data used for tables and figures will be deposited at Dryad.

The following data sets were generated

Article and author information

Author details

  1. Teresa Fan

    University of Kentucky, LEXINGTON, United States
    For correspondence
    teresa.fan@uky.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-8938
  2. Richard M Higashi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huan Song

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Saeed Daneshmandi

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela L Mahan

    Baptist Health, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew S Purdom

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Therese J Bocklage

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Pittman

    Department of Neurosurgery, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daheng He

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chi Wang

    Deptartment of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew N Lane

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    For correspondence
    andrew.lane@uky.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Surgical patients were consented for freshly resected tissue specimens under the approved IRB protocol (14-0288-F6A; 13-LUN-94-MCC) of the University of Kentucky (UKy).

Copyright

© 2021, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,364
    views
  • 209
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa Fan
  2. Richard M Higashi
  3. Huan Song
  4. Saeed Daneshmandi
  5. Angela L Mahan
  6. Matthew S Purdom
  7. Therese J Bocklage
  8. Thomas A Pittman
  9. Daheng He
  10. Chi Wang
  11. Andrew N Lane
(2021)
Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues
eLife 10:e69578.
https://doi.org/10.7554/eLife.69578

Share this article

https://doi.org/10.7554/eLife.69578

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.

    1. Cancer Biology
    2. Computational and Systems Biology
    Aurélie Anne-Gaëlle Gabriel, Julien Racle ... David Gfeller
    Research Advance

    Assay for Transposase-Accessible Chromatin sequencing (ATAC-Seq) is a widely used technique to explore gene regulatory mechanisms. For most ATAC-Seq data from healthy and diseased tissues such as tumors, chromatin accessibility measurement represents a mixed signal from multiple cell types. In this work, we derive reliable chromatin accessibility marker peaks and reference profiles for most non-malignant cell types frequently observed in the microenvironment of human tumors. We then integrate these data into the EPIC deconvolution framework (Racle et al., 2017) to quantify cell-type heterogeneity in bulk ATAC-Seq data. Our EPIC-ATAC tool accurately predicts non-malignant and malignant cell fractions in tumor samples. When applied to a human breast cancer cohort, EPIC-ATAC accurately infers the immune contexture of the main breast cancer subtypes.