The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma

  1. Nicole Laurencia Yuwono
  2. Kristina Warton
  3. Caroline Elizabeth Ford  Is a corresponding author
  1. Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South Wales, Australia
2 figures, 3 tables and 1 additional file

Figures

Technical aspects and protocol reporting in the 66 publications summarised in this review.

(A) Interval time between blood collection and processing. (B) Number of centrifugations performed to obtain plasma samples from whole blood. (C) cirDNA extraction methods (specialised cirDNA kits are denoted by stripes). (D) Input volume of plasma into extraction (D).

The effect of biological and lifestyle factors on blood plasma cirDNA concentration in healthy individuals and patients with various diseases and treatments.

Tables

Table 1
Association of cirDNA with gender.
Authors (year)SubjectConclusion to gender differences on cirDNA amount
CohortMale (n)Female (n)
Coulet et al., 2000Head and neck squamous cell carcinoma patients (n = 117)10512No effect
Sozzi et al., 2001Control (n = 43)NANANo effect
Lung cancer patients (n = 84)7212No effect (p=0.403)
Tamkovich et al., 2005Healthy volunteers (n = 35)1520No effect
Zhong et al., 2007Healthy adults (n = 54)2727No effect
Lee et al., 2011Lung cancer patients (n = 134)13121No effect (p=0.947)
Beiter et al., 2011Recreational runners (n = 53)3419No effect
Jylhävä et al., 2012Nonagenarians (n = 258)62196Significantly higher in male (p=0.018)
Kim et al., 2014Control (n = 34)1519No effect (p=0.598)
Gastric cancer patients (n = 30)237Significantly higher in female (p=0.01)
Spindler et al., 2014Metastatic colorectal cancer patients (n = 86)5531No effect (p=0.24)
Jylhävä et al., 2014Finnish population609–681366–409Significantly higher in male (p=0.00)
Jeong et al., 2015Haemodialysis patients (n = 95)NANANo effect
Diabetic haemodialysis patients (n = 50)NANANo effect (p=0.22)
Spindler et al., 2015Metastatic colorectal cancer patients (n = 223)12697No effect (p=0.1)
Chen et al., 2016Stage I and II non-small cell lung cancer patients3325No effect (p=0.318)
Hsieh et al., 2016Oesophageal squamous cell carcinoma patients7011No effect (p=0.315)
Karlas et al., 2017Non-alcoholic fatty liver disease patients (n = 58)322690 bp fragment – no effect; 222 bp fragment – higher in female (p=0.0051)
Li et al., 2017All lymphoma patients (n = 174)10767No effect (p=0.769)
Diffuse large B cell lymphoma (n = 98)6137No effect (p=0.507)
Çayir et al., 2018Control (n = 51)2823Significantly higher in male
Greenhouse workers (n = 72)4131Significantly higher in male
Meddeb et al., 2019Healthy individuals (n = 104)6242Significantly higher in male (p=0.048)
Colorectal cancer patients (n = 118)6850No effect
van der Drift et al., 2010Healthy controls (n = 21)192No effect
Lung cancer patients (n = 46)3016
Catarino et al., 2012Healthy controls (n = 205)78127Significantly higher in male (p<0.001)
Lung cancer patients (n = 104)8620No effect (p=0.123)
Wu et al., 2019Newly diagnosed lymphoma patients (n = 60)3228No effect (p=0.76)
Treated lymphoma patients (n = 107)5948No effect (p=0.4967)
Alghofaili et al., 2019Healthy volunteers (n = 275)124151Significantly higher in male (p=0.000103)
Caglar et al., 2020Thyroiditis (n = 33)NANANo effect (p>0.7)
Benign (n = 37)NANANo effect (p=0.054)
Malignant (n = 30)NANANo effect
All thyroid patients (n = 100)NANANo effect (p=0.08)
Bryk et al., 2019T2D patients (n = 111)NANANo effect (p=0.51)
Bu et al., 2020Gastric cancer patients (n = 61)4120No effect
  1. T2D: type II diabetes.

Table 2
Association of cirDNA with age.
Authors (year)SubjectAge analysedConclusion to age effect on cirDNA amount
Sozzi et al., 2001Control (n = 43)-No effect
Lung cancer patients (n = 84)39–59 (n = 31) vs. 60–69 (n = 34) vs. ≥70 (n = 19)
Sozzi et al., 2003Lung cancer patients(n = 100)Mean age: 65.1 ± 8.9≤60 vs. 61–71 vs. ≥72Significantly higher with increasing age
Tamkovich et al., 2005Healthy participants (n = 35 [15 M + 20 W])18–53No effect
Zhong et al., 2007Healthy adults20–40 vs. 41–60 vs. >60No effect (men and women mixed)Significantly higher cirDNA for >60 years old compared to 20–40 and 41–60 groups in women only
Lee et al., 2011Lung cancer patients (n = 134)≤65 (n = 108) vs. >65 (n = 26)No effect (p=0.333)
Beiter et al., 2011Recreational runners (n = 53)Mean age: 34.817–60 yearsNo effect
Jylhävä et al., 2011Control (n = 11, females, 22–37 years old) vs. nonagenarians (n = 12, females, born 1917)Significantly higher in elderly (p=0.035, < 0.001, 0.015)*
Jylhävä et al., 2013Young controls (n = 30 [9 M + 21 W], aged 19–30 years old) vs. nonagenarians (n = 144 [43 M + 101 W], aged ≥90 years old)Significantly higher in nonagenarian group (p=0.002)
Kim et al., 2014Control (n = 34)Mean age = 63.79 ± 6.76 years<65 vs. ≥65No effect
Gastric cancer patientsMean age = 66.72 ± 13.16 yearsSignificantly higher with increasing age
Spindler et al., 2014Metastatic colorectal cancer patients (n = 86)Median age: 66 (37–83)<66 (n = 43) vs. >66 (n = 43)No effect
Jylhävä et al., 2014Women (n = 366–409, mean age 60.48 [8.98])Significantly higher with increasing age (p=0.002)
Women (oestrogen HRT user, n = 131–148, mean age 58.57 [6.88])No effect (p=0.391)
Women (oestrogen + progestin HRT user, n = 87–98, mean age 57.23 [6.39])No effect (p=0.869)
Men (n = 609–681), mean age (58.31 [7.91])No effect (p=0712)
Breitbach et al., 2014aMale athletes (n = 26 [13 handball players + 13 triathletes])Mean age 24.7 (3.1)No effect
Jeong et al., 2015Haemodialysis patients (n = 95)58 ± 1.5No effect
Haemodialysis patients (n = 95)58 ± 1.5No effect (p=0.80)
Diabetic haemodialysis patients (n = 50)66.4 ± 1.8No effect (p=0.93)
Spindler et al., 2015Metastatic colorectal cancer patients (n = 223)Median age: 63 (35-82) years old≤63 (n = 119) vs. >63 (n = 104)No effect (p=0.39)
Korzeneva et al., 2015Average age for all groups: 48.5 ± 16.3 years
Never-exposed control group (n = 109)*21–86No effect (p=0.13)
Chronic gamma-neutron radiation-exposed group (n = 88)*26–79No effect (p=0.6)
Chronic tritium β-radiation-exposed group (n = 88)*20–80No effect (p=0.06)
Never-exposed control group (n = 109)<65 years old vs. ≥65 years oldSignificantly higher with increasing age
Chronic gamma-neutron radiation-exposed group (n = 88)<65 years old vs. ≥65 years oldSignificantly lower with increasing age
Chronic tritium β-radiation-exposed group (n = 88)<65 years old vs. ≥65 years oldNo effect
Hsieh et al., 2016Oesophageal squamous cell carcinoma patients (n = 81 [70 M + 11 F])<60 (N = 43) vs. >60 (N = 38)No effect (p=0.588)
Tosevska et al., 2016Institutionalised elderly aged 65–98 (n = 105)65–98No effect
Karlas et al., 2017Non-alcoholic fatty liver disease patients (n = 58)Age (mean age 62.1 ± 11 years old)No effect
Li et al., 2017All lymphoma patients (n = 174)≤60 (N = 117) vs. ≥60 (N = 57)No effect (p=0.414)
Diffuse large B cell lymphoma (n = 98)≤60 (N = 61) vs. ≥60 (N = 37)No effect (p=0.668)
Beranek et al., 2017Exacerbated psoriasis vulgaris patients (n = 28 [15 M + 13 W])18–69 (median age 50)No effect
Teo et al., 2019Young (n = 3) vs. elderly (n = 3) vs. healthy centenarians (n = 3) vs. unhealthy centenarians (n = 3)No effect
Meddeb et al., 2019Healthy individuals (n = 104)Age range: 18–69<47 (n = 52) vs. ≥47 (n = 52)Significantly higher with increasing age (p=0.009)
Healthy individuals (n = 104)Young (n = 79) vs. older (n = 25)Significantly higher with increasing age (p=0.0026)
Colorectal cancer patients (n = 118)Age range: 22–91<65 (n = 52) vs. ≥65 (n = 66)No effect
Colorectal cancer patients (n = 118)Young (n = 25) vs. older (n = 93)No effect (p=0.913)
van der Drift et al., 2010Healthy controls<60 vs. ≥60No effect (p=0.43)
Lung cancer<60 vs. ≥60No effect (p=0.25)
Catarino et al., 2012Healthy controls (n = 205)<64 vs. ≥64No effect (p=0.342)
Lung cancer patients (n = 104)<64 vs. ≥64No effect (p=0.614)
Wu et al., 2019Newly diagnosed lymphoma patients (n = 60)<60 vs. ≥60No effect (p=0.4041)
Treated lymphoma patients (n = 107)<60 vs. ≥60No effect (p=0.3127)
Alghofaili et al., 2019Healthy volunteers (n = 275)Correlation plot (0–57 years old; median 27 years old)No effect (r = –0.09)
Caglar et al., 2020Thyroiditis (n = 33)37.6 ± 10.9No effect
Benign (n = 37)54.1 ± 13.1No effect
Malignant (n = 30)47.8 ± 11.9No effect
All thyroid patients (n = 100)Significant positive correlation (p<0.05)
Bryk et al., 2019T2D patientsNo effect (p=0.63)
Bu et al., 2020Gastric cancer patients (n = 61)40–83No effect (p=0.323 and p=0.280)
  1. *

    Three different extraction kits.

  2. Using same cutoff for both healthy and cancer cohort as the median age (56) of all individuals tested.

  3. Two different extraction kits.

  4. HRT: hormone replacement therapy; T2D: type II diabetes.

Table 3
cirDNA measurements in acute exercise.
Authors (year)SettingSubjectCirDNA measurement time points
Atamaniuk et al., 2004Race (did not specify duration and distance)Healthy half-marathon runners (n = 25 [12 M + 13 F])Before the race, immediately after race, 2 hr post-race
Margeli et al., 2005246 km ultra-marathonHealthy males (n = 15)Pre-race, post-race (within 15 min), post-race (48 hr)
Atamaniuk et al., 20086 hr raceExperienced ultra-marathon runners (n = 14 [9 M + 5 F])Pre-race, post-race, post-race (2 hr), post-race (24 hr)
Fatouros et al., 2010Control (rest): remain seated/lying in the labExercise: 45 min treadmill run followed by increase in speed until exhaustionModerately trained men (n = 11)Pre-exercise, post-exercise, post-exercise (0.5 hr, 1, 2, 3, 4, 5, 6, 8, 10, 24 hr)
Atamaniuk et al., 2010Six sets of six weightlifting exerciseMale competitive weightlifters (n = 12)Pre-exercise, post-exercise (immediately after), post-exercise (2 hr)
Beiter et al., 2011Public 10 km cross-country interval runRecreational runners (n = 53 [34 M + 19 W])Pre-exercise, immediately after
Incremental test on treadmill (until exhaustion)Well-trained male athletes (n = 9)Pre-exercise, immediately after, post-exercise (30 min)
Strenuous treadmill until exhaustionWell-trained endurance male athlete (n = 1), moderately trained female participant (n = 1), well-trained recreational male runner (n = 1)Pre-exercise, mid-exercise (3, 6, 9, 12, 15 min), post-exercise (5, 10, 15, 20, 30 min)
de Sousa et al., 2012Overload training programme (day 1–8) then 10 × 800 m sprints on day 9Highly competitive male endurance runners (n = 24)Day 1, day 9 (pre-exercise [–140 min], post-exercise [immediate, 80 min])
Breitbach et al., 2014aTreadmill until exhaustion (average 17.9 min)Male athletes (n = 26 [13 handball players + 13 triathletes])Pre-exercise, post-exercise
Beiter et al., 2014Increment treadmill until exhaustionWell-trained male athletes (n = 6)Pre-exercise, post-exercise (immediately), post-exercise (30 min)
High-intensity 60 min cyclingUntrained males (n = 6)Pre-exercise, post-exercise (immediately), post-exercise (3 hr)
Regularly endurance trained males (n = 6)Pre-exercise, post-exercise (immediately), post-exercise (3 hr)
Breitbach et al., 2014b10 km relay raceRecreational runners (n = 10 [6 M + 4 F])Pre-exercise, post-exercise
Tug et al., 2015Incremental treadmill testHealthy male controls (n = 3)Pre-exercise, post-exercise (immediately), post-exercise (90 min)
Healthy female controls (n = 3)
Sex-mismatched haematopoietic stem cell transplantation patients (n = 5 females with male donors)
Sex-mismatched haematopoietic stem cell transplantation patients (n = 2 males with female donors)
Helmig et al., 2015Incremental treadmill test until exhaustionPhysically active men (n = 5)Pre-exercise, post-exercise (immediately after, 10, 30, 90 min)
Frühbeis et al., 2015Increment cycling test until exhaustionPhysically active male (more than 3 hr/week) tested twice (n = 1)Pre-exercise, mid-exercise (3, 6, 9, 12, 15, 18, 21 min), post-exercise (immediately after, 10, 30, 90 min)
Tug et al., 2017bAcute strength exercise (whole-body exercises, deadlifts, squats and muscle-targeted exercises)Regular strength trained men (n = 16)12th, 13th, 14th, 15th, 16th exercise
High-intensity trainingn = 5/16Before first exercise, after last exercise
Differential trainingn = 5/16Before first exercise, after last exercise
Conservation trainingn = 6/16Before first exercise, after last exercise
Tug et al., 2017aIncremental bicycle exercise until exhaustionCompetitive male cyclists (n = 11)Pre-exercise, post-exercise, post-exercise (90 min)
Stawski et al., 2017Treadmill until exhaustionAveraged-trained men (n = 11)Pre- and post-1st bout, 2nd bout and 3rd bout of exercise
Haller et al., 2017Stepwise increment running test until exhaustionAthletes (n = 14 [7 M + 7 W])Pre-exercise, mid-exercise (3, 6, 9, 12, 15, 18, 21 min), post-exercise (15, 30 min)
40 min endurance run at 9.6 km/hrAthletes (n = 13 [7 M + 6 W])Pre-exercise, post-exercise
Hummel et al., 2018Treadmill until exhaustionMale students of sports science (n = 20)Pre-exercise (–2 min), post-exercise (2, 15, 30, 40 min)
Haller et al., 20185 × 40 m sprints (5.94 ± 0.50 s)Healthy subjects (n = 9 [7 M + 2 F])Pre-exercise, post-exercise
Treadmill testMale football players playing more than 70 min in game and participated in treadmill test (n = 10)Pre-exercise, post-exercise
Season football gamePre-exercise, post-exercise
Ferrandi et al., 2018High-intensity interval exercise (30 min)Healthy male subjects (n = 14 [seven normal weight and seven obese])Pre-exercise, post-exercise, post-exercise (1 hr)
Ohlsson et al., 2020Cycling until maximal heart rateHealthy volunteers (n = 8 [4 M and 4 W])Pre-exercise, sub-max load, max load, post-exercise (30, 90 min)
Mavropalias et al., 2021Eccentric cyclingMen unaccustomed to eccentric exercise (n = 20)Pre-exercise, post-exercise, post-exercise (24, 48, 72 hr)

Additional files

Supplementary file 1

Impact of biological and lifestyle factors on cirDNA level.

https://cdn.elifesciences.org/articles/69679/elife-69679-supp1-v1.xlsx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Laurencia Yuwono
  2. Kristina Warton
  3. Caroline Elizabeth Ford
(2021)
The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma
eLife 10:e69679.
https://doi.org/10.7554/eLife.69679