A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits, and demonstrate an accumulation of 'coat-less' vesicles which fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in-situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Data availability
Source Data (Figures 1B,C; 2B; 3B; as well as Figure 3 Supplement 1C, Figure 7 Supplement-1C) have been uploaded with the submission containing numerical data of all graphs shown in the figures and figure supplements. We have also uploaded the Excel or/and Prism files as source data in addition to the data points which have been referenced, as appropriate in the Figure legends. Source data of raw and full uncropped blots for Figures 3B, C, E and Figure 3 Supplement 1A, as well as Figure 5B, C and Figure 5 Supplement 1 B-D are uploaded as zipped files per figure. For Figure 7F, we have included the ROIs used for calculations uploaded in a single folder including all numerical data of Figure 7 (7B-D,F) graphs at Dryad https://doi.org/10.5061/dryad.m37pvmd33. All analysis tools have been made available on GitHub (https://github.com/IGMM-ImagingFacility/Quidwai2020 WDR35paper), as described in Materials and Methods. Proteomics data files are be uploaded ProteomeXchange (Identifer: PXD022652), with the accession number is available with the paper and is now publically available.Project Name: A WDR35-dependent coatomer transports ciliary membrane proteins from the Golgi to the ciliaProject accession: PXD022652
-
Figure 7- source data 1.Dryad Digital Repository, doi:10.5061/dryad.m37pvmd33.
Article and author information
Author details
Funding
European Molecular Biology Laboratory (Short Term Fellowship)
- Tooba Quidwai
European Commission (H2020,Grant Agreement number 888322)
- Narcis A Petriman
Lister Institute of Preventive Medicine (Research Prize Fellow)
- Joseph A Marsh
Novo Nordisk (Grant No. NNF15OC0014164)
- Jiaolong Wang
- Narcis A Petriman
- Esben Lorentzen
Carlsbergfondet (Grant No. CF19-0253)
- Jiaolong Wang
- Narcis A Petriman
- Esben Lorentzen
European Commission (H2020 Grant No. 819826)
- Weihua Leng
- Petra Kiesel
- Gaia Pigino
European Commission (H2020 No. 866355)
- Tooba Quidwai
- Emma A Hall
- Pleasantine Mill
Medical Research Council (Core unit funding No. MC_UU_12018/26)
- Tooba Quidwai
- Emma A Hall
- Laura C Murphy
- Margaret A Keighren
- Pleasantine Mill
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: We followed international, national and institutional guidelines for the care and use of animals. Animal experiments were carried out under UK Home Office Project Licenses PPL 60/4424, PB0DC8431 and P18921CDE in facilities at the University of Edinburgh (PEL 60/2605) and were approved by the University of Edinburgh animal welfare and ethical review body.
Copyright
© 2021, Quidwai et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,754
- views
-
- 557
- downloads
-
- 39
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.
-
- Cell Biology
- Immunology and Inflammation
Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.