Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference

  1. Andrew R Lynch
  2. Nicholas L. Arp
  3. Amber S Zhou
  4. Beth A Weaver
  5. Mark E Burkard  Is a corresponding author
  1. University of Wisconsin-Madison, United States

Abstract

Chromosomal instability (CIN)-persistent chromosome gain or loss through abnormal mitotic segregation-is a hallmark of cancer that drives aneuploidy. Intrinsic chromosome mis-segregation rate, a measure of CIN, can inform prognosis and is a promising biomarker for response to anti-microtubule agents. However, existing methodologies to measure this rate are labor intensive, indirect, and confounded by selection against aneuploid cells, which reduces observable diversity. We developed a framework to measure CIN, accounting for karyotype selection, using simulations with various levels of CIN and models of selection. To identify the model parameters that best fit karyotype data from single-cell sequencing, we used approximate Bayesian computation to infer mis-segregation rates and karyotype selection. Experimental validation confirmed the extensive chromosome mis-segregation rates caused by the chemotherapy paclitaxel (18.5±0.5/division). Extending this approach to clinical samples revealed that inferred rates fell within direct observations of cancer cell lines. This work provides the necessary framework to quantify CIN in human tumors and develop it as a predictive biomarker.

Data availability

Single-cell DNA sequencing data from this study has been deposited in NCBI SRA (PRJNA725515). All data and scripts used for modeling and analysis have been deposited in OSF at https://osf.io/snrg3/.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Andrew R Lynch

    Carbone Cancer Center, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0238-682X
  2. Nicholas L. Arp

    Carbone Cancer Center, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8709-0667
  3. Amber S Zhou

    Carbone Cancer Center, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Beth A Weaver

    McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7830-3816
  5. Mark E Burkard

    Carbone Cancer Center, University of Wisconsin-Madison, Madison, United States
    For correspondence
    mburkard@wisc.edu
    Competing interests
    Mark E Burkard, declares the following: Medical advisory board of Strata Oncology; Research funding from Abbvie, Genentech, Puma, Arcus, Apollomics, Loxo Oncology/Lilly, and Elevation Oncology. I hold patents on microfluidic device for drug testing, and for homologous recombination and super-resolution microscopy technologies.I declare all interests without adjudicating relationship to the published work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4215-7722

Funding

National Cancer Institute (R01CA234904)

  • Mark E Burkard

National Institutes of Health (R01GM141068)

  • Mark E Burkard

National Cancer Institute (P30CA014520)

  • Mark E Burkard

National Cancer Institute (F31CA254247)

  • Andrew R Lynch

National Institutes of Health (T32HG002760)

  • Andrew R Lynch

National Institutes of Health (T32GM81061)

  • Andrew R Lynch

National Institutes of Health (T32GM008692)

  • Nicholas L. Arp

National Institutes of Health (T32GM008688)

  • Amber S Zhou

National Institutes of Health (T32GM140935)

  • Nicholas L. Arp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lynch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,236
    views
  • 279
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew R Lynch
  2. Nicholas L. Arp
  3. Amber S Zhou
  4. Beth A Weaver
  5. Mark E Burkard
(2022)
Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference
eLife 11:e69799.
https://doi.org/10.7554/eLife.69799

Share this article

https://doi.org/10.7554/eLife.69799

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.