Learning accurate path integration in ring attractor models of the head direction system

  1. Pantelis Vafidis  Is a corresponding author
  2. David Owald
  3. Tiziano D'Albis
  4. Richard Kempter  Is a corresponding author
  1. California Institute of Technology, United States
  2. Charité - Universitätsmedizin Berlin, Germany
  3. Humboldt-Universität zu Berlin, Germany

Abstract

Ring attractor models for angular path integration have received strong experimental support. To function as integrators, head direction circuits require precisely tuned connectivity, but it is currently unknown how such tuning could be achieved. Here, we propose a network model in which a local, biologically plausible learning rule adjusts synaptic efficacies during development, guided by supervisory allothetic cues. Applied to the Drosophila head direction system, the model learns to path-integrate accurately and develops a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading, and where the network remaps to integrate with different gains in rodents. Our model predicts that path integration requires self-supervised learning during a developmental phase, and proposes a general framework to learn to path-integrate with gain-1 even in architectures that lack the physical topography of a ring.

Data availability

All code used in this work is available at https://github.com/panvaf/LearnPI. The files required to reproduce the figures can be found at https://gin.g-node.org/pavaf/LearnPI.

The following previously published data sets were used

Article and author information

Author details

  1. Pantelis Vafidis

    Computation and Neural Systems, California Institute of Technology, Pasadena, United States
    For correspondence
    pvafeidi@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9768-0609
  2. David Owald

    NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7747-7884
  3. Tiziano D'Albis

    Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1585-1433
  4. Richard Kempter

    Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    r.kempter@biologie.hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5344-2983

Funding

German Research Foundation (SFB 1315 - project-ID 327654276)

  • David Owald
  • Richard Kempter

Emmy Noether Programme (282979116)

  • David Owald

German Federal Ministry for Education and Research (01GQ1705)

  • Richard Kempter

Onassis Foundation Scholarship

  • Pantelis Vafidis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Srdjan Ostojic, Ecole Normale Superieure Paris, France

Publication history

  1. Received: April 28, 2021
  2. Accepted: June 17, 2022
  3. Accepted Manuscript published: June 20, 2022 (version 1)

Copyright

© 2022, Vafidis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 261
    Page views
  • 119
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pantelis Vafidis
  2. David Owald
  3. Tiziano D'Albis
  4. Richard Kempter
(2022)
Learning accurate path integration in ring attractor models of the head direction system
eLife 11:e69841.
https://doi.org/10.7554/eLife.69841

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.