Heat Shock Factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells

  1. Natalia Vydra  Is a corresponding author
  2. Patryk Janus
  3. Paweł Kuś
  4. Tomasz Stokowy
  5. Katarzyna Mrowiec
  6. Agnieszka Toma-Jonik
  7. Aleksandra Krzywon
  8. Alexander Jorge Cortez
  9. Bartosz Wojtaś
  10. Bartłomiej Gielniewski
  11. Roman Jaksik
  12. Marek Kimmel
  13. Wieslawa Widlak  Is a corresponding author
  1. Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
  2. Silesian University of Technology, Poland
  3. University of Bergen, Norway
  4. Polish Academy of Sciences, Poland
  5. Rice University, United States

Abstract

Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from the TCGA database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers, an elevated HSF1 level is associated with metastatic disease.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE159802, GSE159724 (scheduled to be released on Oct 21, 2021), and GSE186004 (scheduled to be released on Oct 13, 2022).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Natalia Vydra

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    For correspondence
    natalia.vydra@io.gliwice.pl
    Competing interests
    The authors declare that no competing interests exist.
  2. Patryk Janus

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Paweł Kuś

    Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomasz Stokowy

    Department of Clinical Science, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Katarzyna Mrowiec

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Agnieszka Toma-Jonik

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Aleksandra Krzywon

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4796-5478
  8. Alexander Jorge Cortez

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1284-2638
  9. Bartosz Wojtaś

    Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  10. Bartłomiej Gielniewski

    Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Roman Jaksik

    Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Marek Kimmel

    Department of Statistics, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Wieslawa Widlak

    Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
    For correspondence
    wieslawa.widlak@io.gliwice.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8440-9414

Funding

National Science Centre, Poland (2014/13/B/NZ7/02341)

  • Natalia Vydra

National Science Centre, Poland (2015/17/B/NZ3/03760)

  • Wieslawa Widlak

National Science Centre, Poland (2018/29/B/ST7/02550)

  • Marek Kimmel

European Social Fund (POWR.03.02.00-00-I029)

  • Paweł Kuś

European Social Fund (POWR.03.02.00-00-I029)

  • Alexander Jorge Cortez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maureen E Murphy, The Wistar Institute, United States

Version history

  1. Received: April 28, 2021
  2. Preprint posted: May 7, 2021 (view preprint)
  3. Accepted: November 15, 2021
  4. Accepted Manuscript published: November 16, 2021 (version 1)
  5. Version of Record published: December 24, 2021 (version 2)

Copyright

© 2021, Vydra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,589
    views
  • 290
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natalia Vydra
  2. Patryk Janus
  3. Paweł Kuś
  4. Tomasz Stokowy
  5. Katarzyna Mrowiec
  6. Agnieszka Toma-Jonik
  7. Aleksandra Krzywon
  8. Alexander Jorge Cortez
  9. Bartosz Wojtaś
  10. Bartłomiej Gielniewski
  11. Roman Jaksik
  12. Marek Kimmel
  13. Wieslawa Widlak
(2021)
Heat Shock Factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells
eLife 10:e69843.
https://doi.org/10.7554/eLife.69843

Share this article

https://doi.org/10.7554/eLife.69843

Further reading

    1. Cancer Biology
    Célia Guérin, David Tulasne
    Review Article

    Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.