Consequences of PDGFR a + fibroblast reduction in adult murine hearts

  1. Jill T Kuwabara
  2. Akitoshi Hara
  3. Sumit Bhutada
  4. Greg S Gojanovich
  5. Jasmine Chen
  6. Kanani Hokutan
  7. Vikram Shettigar
  8. Anson Y Lee
  9. Lydia P DeAngelo
  10. Jack R Heckl
  11. Julia R Jahansooz
  12. Dillon K Tacdol
  13. Mark T Ziolo
  14. Suneel S Apte
  15. Michelle D Tallquist  Is a corresponding author
  1. University of Hawaii at Manoa, United States
  2. Cleveland Clinic Lerner Research Institute, United States
  3. The Ohio State University Wexner Medical Center, United States

Abstract

Fibroblasts produce the majority of collagen in the heart and are thought to regulate extracellular matrix (ECM) turnover. Although fibrosis accompanies many cardiac pathologies and is generally deleterious, the role of fibroblasts in maintaining the basal ECM network and in fibrosis in vivo is poorly understood. We genetically ablated fibroblasts in mice to evaluate the impact on homeostasis of adult ECM and cardiac function after injury. Fibroblast-ablated mice demonstrated a substantive reduction in cardiac fibroblasts, but fibrillar collagen and the ECM proteome were not overtly altered when evaluated by quantitative mass spectrometry and N-terminomics. However, the distribution and quantity of collagen VI, a microfibrillar collagen that forms an open network with the basement membrane, was reduced. In fibroblast-ablated mice, cardiac function was better preserved following angiotensin II/phenylephrine (AngII/PE)-induced fibrosis and myocardial infarction (MI). Analysis of cardiomyocyte function demonstrated altered sarcomere shortening and slowed calcium decline in both uninjured and AngII/PE infused fibroblast-ablated mice. After MI, the residual resident fibroblasts responded to injury, albeit with reduced proliferation and numbers immediately after injury. These results indicate that the adult mouse heart tolerates a significant degree of fibroblast loss with potentially beneficial impact on cardiac function after injury. The cardioprotective effect of controlled fibroblast reduction may have therapeutic value in heart disease.

Data availability

Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD021741 (shotgun proteomics) and PXD021739 (N-terminomics).

The following data sets were generated

Article and author information

Author details

  1. Jill T Kuwabara

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Akitoshi Hara

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sumit Bhutada

    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Greg S Gojanovich

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jasmine Chen

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kanani Hokutan

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vikram Shettigar

    Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anson Y Lee

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lydia P DeAngelo

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0549-325X
  10. Jack R Heckl

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Julia R Jahansooz

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dillon K Tacdol

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Mark T Ziolo

    Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Suneel S Apte

    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8441-1226
  15. Michelle D Tallquist

    Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, United States
    For correspondence
    michelle.tallquist@hawaii.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1383-144X

Funding

National Institutes of Health (HL074257)

  • Michelle D Tallquist

National Institutes of Health (HL115505)

  • Jill T Kuwabara

American Heart Association (PRE29630019)

  • Jill T Kuwabara

American Heart Association (GRNT33660474)

  • Michelle D Tallquist

American Heart Association (PRE834732)

  • Jasmine Chen

American Heart Association

  • Suneel S Apte

Paul G. Allen Frontiers Group

  • Suneel S Apte

Japan Society for the Promotion of Science

  • Akitoshi Hara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed according to the animal experimental guidelines issued and approved by Institutional Animal Care and Use Committees of the University of Hawaii at Manoa (APN12-1421 and APN12-1469) and The Ohio State University Wexner Medical Center (#2021A00000070). All surgeries were performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Christopher L-H Huang, University of Cambridge, United Kingdom

Publication history

  1. Received: April 28, 2021
  2. Accepted: September 22, 2022
  3. Accepted Manuscript published: September 23, 2022 (version 1)

Copyright

© 2022, Kuwabara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 320
    Page views
  • 191
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jill T Kuwabara
  2. Akitoshi Hara
  3. Sumit Bhutada
  4. Greg S Gojanovich
  5. Jasmine Chen
  6. Kanani Hokutan
  7. Vikram Shettigar
  8. Anson Y Lee
  9. Lydia P DeAngelo
  10. Jack R Heckl
  11. Julia R Jahansooz
  12. Dillon K Tacdol
  13. Mark T Ziolo
  14. Suneel S Apte
  15. Michelle D Tallquist
(2022)
Consequences of PDGFR a + fibroblast reduction in adult murine hearts
eLife 11:e69854.
https://doi.org/10.7554/eLife.69854

Further reading

    1. Cell Biology
    2. Developmental Biology
    Andrew Kuo, Antonio Checa ... Timothy Hla
    Research Article

    Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Yang S Chen, Wanfu Hou ... Brian M Zid
    Research Article Updated

    During times of unpredictable stress, organisms must adapt their gene expression to maximize survival. Along with changes in transcription, one conserved means of gene regulation during conditions that quickly repress translation is the formation of cytoplasmic phase-separated mRNP granules such as P-bodies and stress granules. Previously, we identified that distinct steps in gene expression can be coupled during glucose starvation as promoter sequences in the nucleus are able to direct the subcellular localization and translatability of mRNAs in the cytosol. Here, we report that Rvb1 and Rvb2, conserved ATPase proteins implicated as protein assembly chaperones and chromatin remodelers, were enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that we previously found to be transcriptionally upregulated but translationally downregulated during glucose starvation in yeast. Engineered Rvb1/Rvb2-binding on mRNAs was sufficient to sequester mRNAs into mRNP granules and repress their translation. Additionally, this Rvb tethering to the mRNA drove further transcriptional upregulation of the target genes. Further, we found that depletion of Rvb2 caused decreased alternative glucose metabolism gene mRNA induction, but upregulation of protein synthesis during glucose starvation. Overall, our results point to Rvb1/Rvb2 coupling transcription, mRNA granular localization, and translatability of mRNAs during glucose starvation. This Rvb-mediated rapid gene regulation could potentially serve as an efficient recovery plan for cells after stress removal.