RNA N6-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice

  1. Bochuan Li
  2. Ting Zhang
  3. Mengxia Liu
  4. Zhen Cui
  5. Yanhong Zhang
  6. Mingming Liu
  7. Yanan Liu
  8. Yongqiao Sun
  9. Mengqi Li
  10. Yikui Tian
  11. Ying Yang  Is a corresponding author
  12. Hongfeng Jiang  Is a corresponding author
  13. Degang Liang  Is a corresponding author
  1. Tianjin Medical University, China
  2. Chinese Academy of Sciences, China
  3. Capital Medical University, China

Abstract

Atherosclerosis preferentially occurs in atheroprone vasculature where human umbilical vein endothelial cells (HUVECs) are exposed to disturbed flow. Disturbed flow is associated with vascular inflammation and focal distribution. Recent studies have revealed the involvement of epigenetic regulation in atherosclerosis progression. N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic mRNA, but its function in endothelial atherogenic progression remains unclear. Here, we show that m6A mediates the EGFR signaling pathway during EC activation to regulate the atherosclerotic process. Oscillatory stress (OS) reduced the expression of METTL3, the primary m6A methyltransferase. Through m6A sequencing and functional studies, we determined that m6A mediates the mRNA decay of the vascular pathophysiology gene EGFR which leads to EC dysfunction. m6A modification of the EGFR 3'UTR accelerated its mRNA degradation. Double mutation of the EGFR 3'UTR abolished METTL3-induced luciferase activity. Adenovirus-mediated METTL3 overexpression significantly reduced EGFR activation and endothelial dysfunction in the presence of OS. Furthermore, TSP-1, an EGFR ligand, was specifically expressed in atheroprone regions without being affected by METTL3. Inhibition of the TSP-1/EGFR axis by using shRNA and AG1478 significantly ameliorated atherogenesis. Overall, our study revealed that METTL3 alleviates endothelial atherogenic progression through m6A-dependent stabilization of EGFR mRNA, highlighting the important role of RNA transcriptomics in atherosclerosis regulation.

Data availability

RNA-seq and MeRIP-seq data generated in this study have been deposited to the Genome Sequence Archive in BIG Data Center under accession number PRJCA004746.

The following data sets were generated

Article and author information

Author details

  1. Bochuan Li

    Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ting Zhang

    CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mengxia Liu

    CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen Cui

    Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanhong Zhang

    Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Mingming Liu

    Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yanan Liu

    Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yongqiao Sun

    CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Mengqi Li

    Tianjin Medical University General Hospital Cardiovascular Department, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yikui Tian

    Tianjin Medical University General Hospital Cardiovascular Department, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Ying Yang

    CAS Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences, Beijing, China
    For correspondence
    yingyang@big.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Hongfeng Jiang

    Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Tianjin, China
    For correspondence
    jhf@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Degang Liang

    Tianjin Medical University General Hospital Cardiovascular Department, Tianjin Medical University, Tianjin, China
    For correspondence
    15922230066@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2618-6651

Funding

National Natural Science Foundation of China (81900396)

  • Bochuan Li

National Natural Science Foundation of China (82000477)

  • Mengqi Li

National Natural Science Foundation of China (81970392)

  • Hongfeng Jiang

Postdoctoral Research Foundation of China (2019M661041)

  • Bochuan Li

Postdoctoral Research Foundation of China (BX20190235)

  • Bochuan Li

China Association for Science and Technology (Excellent Sino-foreign Youth Exchange Program)

  • Bochuan Li

National Natural Science Foundation of China (91940304)

  • Ying Yang

Chinese Academy of Sciences (2018133)

  • Ying Yang

National Key Research and Development Program of China (2018YFA0801200)

  • Ying Yang

Beijing Nova Program (Z201100006820104)

  • Ying Yang

National Natural Science Foundation of China (81870207)

  • Yikui Tian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The investigation conformed to the Guide for the Care and Use of Laboratory Animals by the US National Institutes of Health (NIH 17 Publication No. 85-23, revised in 2011). All study protocols and the use of animals were approved by the Institutional Animal Care and Use Committee of Tianjin Medical University.

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 998
    views
  • 171
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bochuan Li
  2. Ting Zhang
  3. Mengxia Liu
  4. Zhen Cui
  5. Yanhong Zhang
  6. Mingming Liu
  7. Yanan Liu
  8. Yongqiao Sun
  9. Mengqi Li
  10. Yikui Tian
  11. Ying Yang
  12. Hongfeng Jiang
  13. Degang Liang
(2022)
RNA N6-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice
eLife 11:e69906.
https://doi.org/10.7554/eLife.69906

Share this article

https://doi.org/10.7554/eLife.69906

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.