High-throughput automated methods for classical and operant conditioning of Drosophila larvae

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic  Is a corresponding author
  10. Kristina T Klein  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Janelia Research Campus, United States
  4. Institut Pasteur, France

Abstract

Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i. e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i. e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.

Data availability

All data used to generate figures 2-5, as well as all supplemental figures, are now submitted as source data files. We also now submit CAD drawings for the multi-larva tracker.

Article and author information

Author details

  1. Elise C Croteau-Chonka

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5116-3772
  2. Michael S Clayton

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lalanti Venkatasubramanian

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Samuel N Harris

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Benjamin M W Jones

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Lakshmi Narayan

    Janelia Research Campus, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Michael Winding

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Jean-Baptiste Masson

    Department of Computational Biology and Neuroscience, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
  9. Marta Zlatic

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mzlatic@mrc-lmb.cam.ac.uk
    Competing interests
    Marta Zlatic, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-2250
  10. Kristina T Klein

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    kristina.t.klein@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-3628

Funding

Gates Cambridge Trust

  • Marta Zlatic

Cambridge Trust

  • Marta Zlatic

HHMI Janelia Visiting Scientist Program

  • Marta Zlatic

University of Cambridge, Trinity College

  • Marta Zlatic

HHMI Janelia

  • Marta Zlatic

European Research Council

  • Marta Zlatic

Wellcome Trust

  • Marta Zlatic

Medical Research Council

  • Marta Zlatic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aravinthan D. T. Samuel, Harvard University, United States

Version history

  1. Received: May 4, 2021
  2. Preprint posted: June 14, 2021 (view preprint)
  3. Accepted: October 26, 2022
  4. Accepted Manuscript published: October 28, 2022 (version 1)
  5. Accepted Manuscript updated: October 31, 2022 (version 2)
  6. Version of Record published: November 21, 2022 (version 3)

Copyright

© 2022, Croteau-Chonka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,535
    Page views
  • 206
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic
  10. Kristina T Klein
(2022)
High-throughput automated methods for classical and operant conditioning of Drosophila larvae
eLife 11:e70015.
https://doi.org/10.7554/eLife.70015

Share this article

https://doi.org/10.7554/eLife.70015

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.