High-throughput automated methods for classical and operant conditioning of Drosophila larvae

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic  Is a corresponding author
  10. Kristina T Klein  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Janelia Research Campus, United States
  4. Institut Pasteur, France

Abstract

Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i. e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i. e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.

Data availability

All data used to generate figures 2-5, as well as all supplemental figures, are now submitted as source data files. We also now submit CAD drawings for the multi-larva tracker.

Article and author information

Author details

  1. Elise C Croteau-Chonka

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5116-3772
  2. Michael S Clayton

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lalanti Venkatasubramanian

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Samuel N Harris

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Benjamin M W Jones

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Lakshmi Narayan

    Janelia Research Campus, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Michael Winding

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Jean-Baptiste Masson

    Department of Computational Biology and Neuroscience, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
  9. Marta Zlatic

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mzlatic@mrc-lmb.cam.ac.uk
    Competing interests
    Marta Zlatic, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-2250
  10. Kristina T Klein

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    kristina.t.klein@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-3628

Funding

Gates Cambridge Trust

  • Marta Zlatic

Cambridge Trust

  • Marta Zlatic

HHMI Janelia Visiting Scientist Program

  • Marta Zlatic

University of Cambridge, Trinity College

  • Marta Zlatic

HHMI Janelia

  • Marta Zlatic

European Research Council

  • Marta Zlatic

Wellcome Trust

  • Marta Zlatic

Medical Research Council

  • Marta Zlatic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Croteau-Chonka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,992
    views
  • 255
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic
  10. Kristina T Klein
(2022)
High-throughput automated methods for classical and operant conditioning of Drosophila larvae
eLife 11:e70015.
https://doi.org/10.7554/eLife.70015

Share this article

https://doi.org/10.7554/eLife.70015

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.