High-throughput automated methods for classical and operant conditioning of Drosophila larvae

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic  Is a corresponding author
  10. Kristina T Klein  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Janelia Research Campus, United States
  4. Institut Pasteur, France

Abstract

Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i. e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i. e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.

Data availability

All data used to generate figures 2-5, as well as all supplemental figures, are now submitted as source data files. We also now submit CAD drawings for the multi-larva tracker.

Article and author information

Author details

  1. Elise C Croteau-Chonka

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5116-3772
  2. Michael S Clayton

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lalanti Venkatasubramanian

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Samuel N Harris

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Benjamin M W Jones

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Lakshmi Narayan

    Janelia Research Campus, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Michael Winding

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Jean-Baptiste Masson

    Department of Computational Biology and Neuroscience, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
  9. Marta Zlatic

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mzlatic@mrc-lmb.cam.ac.uk
    Competing interests
    Marta Zlatic, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-2250
  10. Kristina T Klein

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    kristina.t.klein@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-3628

Funding

Gates Cambridge Trust

  • Marta Zlatic

Cambridge Trust

  • Marta Zlatic

HHMI Janelia Visiting Scientist Program

  • Marta Zlatic

University of Cambridge, Trinity College

  • Marta Zlatic

HHMI Janelia

  • Marta Zlatic

European Research Council

  • Marta Zlatic

Wellcome Trust

  • Marta Zlatic

Medical Research Council

  • Marta Zlatic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Croteau-Chonka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,119
    views
  • 263
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic
  10. Kristina T Klein
(2022)
High-throughput automated methods for classical and operant conditioning of Drosophila larvae
eLife 11:e70015.
https://doi.org/10.7554/eLife.70015

Share this article

https://doi.org/10.7554/eLife.70015

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.