A universal pocket in Fatty acyl-AMP ligases ensures redirection of fatty acid pool away from Coenzyme A-based activation

Abstract

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3', 5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organisations. The universal distribution of FAALs suggests they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, Figure 4, Figure supplement 5b and Figure supplement 6.

Article and author information

Author details

  1. Gajanan Shrikant Patil

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  2. Priyadarshan Kinatukara

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2210-2369
  3. Sudipta Mondal

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3923-7449
  4. Sakshi Shambhavi

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8852-1542
  5. Ketan D Patel

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4254-3145
  6. Surabhi Pramanik

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  7. Noopur Dubey

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  8. Subhash Narasimhan

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  9. Murali Krishna Madduri

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  10. Biswajit Pal

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  11. Rajesh S Gokhale

    National Institute of Immunology, New Delhi, India
    Competing interests
    No competing interests declared.
  12. Rajan Sankaranarayanan

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    For correspondence
    sankar@ccmb.res.in
    Competing interests
    Rajan Sankaranarayanan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4524-9953

Funding

Department of Biotechnology, Ministry of Science and Technology, India

  • Gajanan Shrikant Patil

Council of Scientific and Industrial Research, Ministry of Science and Technology, India

  • Sudipta Mondal

University Grants Commission

  • Sakshi Shambhavi

Council of Scientific and Industrial Research, Ministry of Science and Technology, India

  • Rajan Sankaranarayanan

Science and Engineering Research Board, India

  • Rajan Sankaranarayanan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Patil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,870
    views
  • 335
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gajanan Shrikant Patil
  2. Priyadarshan Kinatukara
  3. Sudipta Mondal
  4. Sakshi Shambhavi
  5. Ketan D Patel
  6. Surabhi Pramanik
  7. Noopur Dubey
  8. Subhash Narasimhan
  9. Murali Krishna Madduri
  10. Biswajit Pal
  11. Rajesh S Gokhale
  12. Rajan Sankaranarayanan
(2021)
A universal pocket in Fatty acyl-AMP ligases ensures redirection of fatty acid pool away from Coenzyme A-based activation
eLife 10:e70067.
https://doi.org/10.7554/eLife.70067

Share this article

https://doi.org/10.7554/eLife.70067

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.