Structure and mechanistic features of the prokaryotic minimal RNase P

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann  Is a corresponding author
  8. Florian Altegoer  Is a corresponding author
  1. Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Germany
  2. Department of Structural Biology, Max Planck Institute of Biophysics, Germany
  3. Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Germany
  4. Max Planck Institute of Biophysics, Germany
  5. Philipps-Universitaet Marburg, Germany

Abstract

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by RNase P is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various Eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-EM revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.

Data availability

Coordinates and structure factors have been deposited within the protein data bank (PDB) and the electron microscopy data bank (EMDB) under accession codes: 7OG5 and EMD-12878. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

Article and author information

Author details

  1. Rebecca Feyh

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadine Bianca Waeber

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Simone Prinz

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pietro Ivan Giammarinaro

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0356-8481
  5. Gert Bange

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Georg Hochberg

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Roland Karl Hartmann

    Philipps-Universitaet Marburg, Marburg, Germany
    For correspondence
    roland.hartmann@staff.uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Altegoer

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    For correspondence
    altegoer@uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6012-9047

Funding

Deutsche Forschungsgemeinschaft (HA 1672/19-1)

  • Roland Karl Hartmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Version history

  1. Received: May 7, 2021
  2. Accepted: June 25, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Version of Record published: July 8, 2021 (version 2)

Copyright

© 2021, Feyh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,911
    views
  • 280
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann
  8. Florian Altegoer
(2021)
Structure and mechanistic features of the prokaryotic minimal RNase P
eLife 10:e70160.
https://doi.org/10.7554/eLife.70160

Share this article

https://doi.org/10.7554/eLife.70160

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.