Structure and mechanistic features of the prokaryotic minimal RNase P

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann  Is a corresponding author
  8. Florian Altegoer  Is a corresponding author
  1. Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Germany
  2. Department of Structural Biology, Max Planck Institute of Biophysics, Germany
  3. Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Germany
  4. Max Planck Institute of Biophysics, Germany
  5. Philipps-Universitaet Marburg, Germany

Abstract

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by RNase P is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various Eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-EM revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.

Data availability

Coordinates and structure factors have been deposited within the protein data bank (PDB) and the electron microscopy data bank (EMDB) under accession codes: 7OG5 and EMD-12878. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

Article and author information

Author details

  1. Rebecca Feyh

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadine Bianca Waeber

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Simone Prinz

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pietro Ivan Giammarinaro

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0356-8481
  5. Gert Bange

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Georg Hochberg

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Roland Karl Hartmann

    Philipps-Universitaet Marburg, Marburg, Germany
    For correspondence
    roland.hartmann@staff.uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Altegoer

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    For correspondence
    altegoer@uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6012-9047

Funding

Deutsche Forschungsgemeinschaft (HA 1672/19-1)

  • Roland Karl Hartmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Version history

  1. Received: May 7, 2021
  2. Accepted: June 25, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Version of Record published: July 8, 2021 (version 2)

Copyright

© 2021, Feyh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,950
    views
  • 285
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann
  8. Florian Altegoer
(2021)
Structure and mechanistic features of the prokaryotic minimal RNase P
eLife 10:e70160.
https://doi.org/10.7554/eLife.70160

Share this article

https://doi.org/10.7554/eLife.70160

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.