Structure and mechanistic features of the prokaryotic minimal RNase P

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann  Is a corresponding author
  8. Florian Altegoer  Is a corresponding author
  1. Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Germany
  2. Department of Structural Biology, Max Planck Institute of Biophysics, Germany
  3. Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Germany
  4. Max Planck Institute of Biophysics, Germany
  5. Philipps-Universitaet Marburg, Germany

Abstract

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by RNase P is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various Eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-EM revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.

Data availability

Coordinates and structure factors have been deposited within the protein data bank (PDB) and the electron microscopy data bank (EMDB) under accession codes: 7OG5 and EMD-12878. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

Article and author information

Author details

  1. Rebecca Feyh

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadine Bianca Waeber

    Institute of Pharmaceutical Chemistry, Philipps-University Marburg,, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Simone Prinz

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pietro Ivan Giammarinaro

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0356-8481
  5. Gert Bange

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Georg Hochberg

    Max Planck Institute of Biophysics, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Roland Karl Hartmann

    Philipps-Universitaet Marburg, Marburg, Germany
    For correspondence
    roland.hartmann@staff.uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Altegoer

    Chemistry, Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
    For correspondence
    altegoer@uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6012-9047

Funding

Deutsche Forschungsgemeinschaft (HA 1672/19-1)

  • Roland Karl Hartmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Feyh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,988
    views
  • 291
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca Feyh
  2. Nadine Bianca Waeber
  3. Simone Prinz
  4. Pietro Ivan Giammarinaro
  5. Gert Bange
  6. Georg Hochberg
  7. Roland Karl Hartmann
  8. Florian Altegoer
(2021)
Structure and mechanistic features of the prokaryotic minimal RNase P
eLife 10:e70160.
https://doi.org/10.7554/eLife.70160

Share this article

https://doi.org/10.7554/eLife.70160

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.