Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin  Is a corresponding author
  9. Jianfeng Liu  Is a corresponding author
  10. Philippe Rondard  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. Spanish National Research Council, Spain
  3. University of Montpellier, CNRS, INSERM, France

Abstract

G protein-coupled receptors (GPCRs) are among the most promising drug targets. They often form homo- and heterodimers with allosteric cross-talk between receptor entities, which contributes to fine tuning of transmembrane signaling. Specifically controlling the activity of GPCR dimers with ligands is a good approach to clarify their physiological roles and to validate them as drug targets. Here, we examined the mode of action of positive allosteric modulators (PAMs) that bind at the interface of the transmembrane domains of the heterodimeric GABAB receptor. Our site-directed mutagenesis results show that mutations of this interface impact the function of the three PAM tested. The data support the inference that they act at the active interface between both transmembrane domains, the binding site involving residues of the TM6s of the GABAB1 and the GABAB2 subunit. Importantly, the agonist activity of these PAMs involves a key region in the central core of the GABAB2 transmembrane domain, which also controls the constitutive activity of the GABAB receptor. This region corresponds to the sodium ion binding site in class A GPCRs that controls the basal state of the receptors. Overall, these data reveal the possibility of developing allosteric compounds able to specifically modulate the activity of GPCR homo- and heterodimers by acting at their transmembrane interface.

Data availability

Figure 2- Source Data 1 contain the numerical data used to generate the figures;Figure 3 - Source Data 1 contain the numerical data used to generate the figures;Figure 4 - Source Data 1 contain the numerical data used to generate the figures;Figure 5 - Source Data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Lei Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9824-9570
  2. Zhiran Fan

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9543-1211
  3. Xavier Rovira

    MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Xue

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Salomé Roux

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6106-4863
  6. Isabelle Brabet

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingxia Xin

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Philippe Pin

    University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    jean-philippe.pin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianfeng Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    jfliu@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377
  10. Philippe Rondard

    University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    philippe.rondard@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738

Funding

Ministry of Science and Technology of the People's Republic of China (2018YFA0507003)

  • Jianfeng Liu

Agence Nationale de la Recherche (ANR-09-PIRI-0011)

  • Philippe Rondard

Fondation pour la recherche médicale FRM (FRM team: DEQ20170326522)

  • Jean-Philippe Pin

Spanish Ministry of Economy (SAF2015-74132-JIN)

  • Xavier Rovira

National Natural Science Foundation of China (81720108031)

  • Jianfeng Liu

National Natural Science Foundation of China (81872945)

  • Jianfeng Liu

National Natural Science Foundation of China (31721002)

  • Jianfeng Liu

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

Ministry of Education of the People's Republic of China (B08029)

  • Jianfeng Liu

Centre National de la Recherche Scientifique (PICS n{degree sign}07030)

  • Philippe Rondard

Centre National de la Recherche Scientifique (PRC n{degree sign}1403)

  • Philippe Rondard

Institut National de la Santé et de la Recherche Médicale (IRP Brain Signal)

  • Philippe Rondard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,052
    views
  • 425
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin
  9. Jianfeng Liu
  10. Philippe Rondard
(2021)
Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface
eLife 10:e70188.
https://doi.org/10.7554/eLife.70188

Share this article

https://doi.org/10.7554/eLife.70188

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.