Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin  Is a corresponding author
  9. Jianfeng Liu  Is a corresponding author
  10. Philippe Rondard  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. Spanish National Research Council, Spain
  3. University of Montpellier, CNRS, INSERM, France

Abstract

G protein-coupled receptors (GPCRs) are among the most promising drug targets. They often form homo- and heterodimers with allosteric cross-talk between receptor entities, which contributes to fine tuning of transmembrane signaling. Specifically controlling the activity of GPCR dimers with ligands is a good approach to clarify their physiological roles and to validate them as drug targets. Here, we examined the mode of action of positive allosteric modulators (PAMs) that bind at the interface of the transmembrane domains of the heterodimeric GABAB receptor. Our site-directed mutagenesis results show that mutations of this interface impact the function of the three PAM tested. The data support the inference that they act at the active interface between both transmembrane domains, the binding site involving residues of the TM6s of the GABAB1 and the GABAB2 subunit. Importantly, the agonist activity of these PAMs involves a key region in the central core of the GABAB2 transmembrane domain, which also controls the constitutive activity of the GABAB receptor. This region corresponds to the sodium ion binding site in class A GPCRs that controls the basal state of the receptors. Overall, these data reveal the possibility of developing allosteric compounds able to specifically modulate the activity of GPCR homo- and heterodimers by acting at their transmembrane interface.

Data availability

Figure 2- Source Data 1 contain the numerical data used to generate the figures;Figure 3 - Source Data 1 contain the numerical data used to generate the figures;Figure 4 - Source Data 1 contain the numerical data used to generate the figures;Figure 5 - Source Data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Lei Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9824-9570
  2. Zhiran Fan

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9543-1211
  3. Xavier Rovira

    MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Xue

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Salomé Roux

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6106-4863
  6. Isabelle Brabet

    University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingxia Xin

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Philippe Pin

    University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    jean-philippe.pin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianfeng Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    jfliu@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377
  10. Philippe Rondard

    University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    philippe.rondard@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738

Funding

Ministry of Science and Technology of the People's Republic of China (2018YFA0507003)

  • Jianfeng Liu

Agence Nationale de la Recherche (ANR-09-PIRI-0011)

  • Philippe Rondard

Fondation pour la recherche médicale FRM (FRM team: DEQ20170326522)

  • Jean-Philippe Pin

Spanish Ministry of Economy (SAF2015-74132-JIN)

  • Xavier Rovira

National Natural Science Foundation of China (81720108031)

  • Jianfeng Liu

National Natural Science Foundation of China (81872945)

  • Jianfeng Liu

National Natural Science Foundation of China (31721002)

  • Jianfeng Liu

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

Ministry of Education of the People's Republic of China (B08029)

  • Jianfeng Liu

Centre National de la Recherche Scientifique (PICS n{degree sign}07030)

  • Philippe Rondard

Centre National de la Recherche Scientifique (PRC n{degree sign}1403)

  • Philippe Rondard

Institut National de la Santé et de la Recherche Médicale (IRP Brain Signal)

  • Philippe Rondard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,113
    views
  • 434
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin
  9. Jianfeng Liu
  10. Philippe Rondard
(2021)
Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface
eLife 10:e70188.
https://doi.org/10.7554/eLife.70188

Share this article

https://doi.org/10.7554/eLife.70188

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.