Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira  Is a corresponding author
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin  Is a corresponding author
  9. Philippe Rondard  Is a corresponding author
  10. Jianfeng Liu  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. Spanish National Research Council, Spain
  3. University of Montpellier, CNRS, INSERM, France

Abstract

G protein-coupled receptors (GPCRs) are among the most promising drug targets. They often form homo- and heterodimers with allosteric cross-talk between receptor entities, which contributes to fine tuning of transmembrane signaling. Specifically controlling the activity of GPCR dimers with ligands is a good approach to clarify their physiological roles and to validate them as drug targets. Here, we examined the mode of action of positive allosteric modulators (PAMs) that bind at the interface of the transmembrane domains of the heterodimeric GABAB receptor. Our site-directed mutagenesis results show that mutations of this interface impact the function of the three PAM tested. The data support the inference that they act at the active interface between both transmembrane domains, the binding site involving residues of the TM6s of the GABAB1 and the GABAB2 subunit. Importantly, the agonist activity of these PAMs involves a key region in the central core of the GABAB2 transmembrane domain, which also controls the constitutive activity of the GABAB receptor. This region corresponds to the sodium ion binding site in class A GPCRs that controls the basal state of the receptors. Overall, these data reveal the possibility of developing allosteric compounds able to specifically modulate the activity of GPCR homo- and heterodimers by acting at their transmembrane interface.

Data availability

Figure 2- Source Data 1 contain the numerical data used to generate the figures;Figure 3 - Source Data 1 contain the numerical data used to generate the figures;Figure 4 - Source Data 1 contain the numerical data used to generate the figures;Figure 5 - Source Data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Lei Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9824-9570
  2. Zhiran Fan

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9543-1211
  3. Xavier Rovira

    MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council, Barcelona, Spain
    For correspondence
    xavier.rovira@cid.csic.es
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Xue

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Salomé Roux

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6106-4863
  6. Isabelle Brabet

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingxia Xin

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    jean-philippe.pin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippe Rondard

    Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    philippe.rondard@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738
  10. Jianfeng Liu

    Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    jfliu@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377

Funding

Ministry of Science and Technology of the People's Republic of China (2018YFA0507003)

  • Jianfeng Liu

Agence Nationale de la Recherche (ANR-09-PIRI-0011)

  • Philippe Rondard

Fondation pour la recherche médicale FRM (FRM team: DEQ20170326522)

  • Jean-Philippe Pin

Spanish Ministry of Economy (SAF2015-74132-JIN)

  • Xavier Rovira

National Natural Science Foundation of China (81720108031)

  • Jianfeng Liu

National Natural Science Foundation of China (81872945)

  • Jianfeng Liu

National Natural Science Foundation of China (31721002)

  • Jianfeng Liu

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

Ministry of Education of the People's Republic of China (B08029)

  • Jianfeng Liu

Centre National de la Recherche Scientifique (PICS n{degree sign}07030)

  • Philippe Rondard

Centre National de la Recherche Scientifique (PRC n{degree sign}1403)

  • Philippe Rondard

Institut National de la Santé et de la Recherche Médicale (IRP Brain Signal)

  • Philippe Rondard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Liu
  2. Zhiran Fan
  3. Xavier Rovira
  4. Li Xue
  5. Salomé Roux
  6. Isabelle Brabet
  7. Mingxia Xin
  8. Jean-Philippe Pin
  9. Philippe Rondard
  10. Jianfeng Liu
(2021)
Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface
eLife 10:e70188.
https://doi.org/10.7554/eLife.70188

Share this article

https://doi.org/10.7554/eLife.70188

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.