Bacterial Blooms: The social life of cyanobacteria

The cyanobacterium Synechocystis secretes a specific sulphated polysaccharide to form floating cell aggregates.
  1. Conrad W Mullineaux  Is a corresponding author
  2. Annegret Wilde
  1. School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
  2. Institute of Biology III, University of Freiburg, Germany

Cyanobacteria are ancient and extremely versatile organisms that can be found in nearly every ecosystem on Earth, in particular lakes, rivers and oceans. Like plants and algae, they produce oxygen and use sunlight as an energy source.

Some cyanobacteria – even single-celled ones – show striking collective behaviours and form colonies (or ‘blooms’) that can float on water and have important ecological roles. For instance, billions of years ago, communities of marine Paleoproterozoic cyanobacteria could have helped create the biosphere as we know it by burying carbon compounds and allowing the initial build-up of oxygen in the atmosphere (Kamennaya et al., 2018). On the other hand, toxic cyanobacterial blooms are an increasingly issue for society, as their toxins can be harmful to animals (Huisman et al., 2018). Extreme blooms can also deplete water of oxygen and reduce sunlight and visibility, thereby compromising the feeding and mating behavior of light-reliant species.

It has been unclear why and how cyanobacteria form communities. Aggregation must divert resources away from the core business of making more cyanobacteria, as it generally involves the production of copious quantities of extracellular material. In addition, cells in the centre of dense aggregates can also suffer from both shading and shortage of nutrients (Conradi et al., 2019; Enomoto and Ikeuchi, 2020). So, what advantage does this communal life bring for cyanobacteria?

Now, in eLife, Masahiko Ikeuchi of the University of Tokyo and colleagues – including Kaisei Maeda as first author – report new insights into how cyanobacteria form blooms (Maeda et al., 2021). Using the widely studied cyanobacterium Synechocystis, they identified a set of genes that regulate the production and export of sulphated polysaccharides, chains of sugar molecules modified with sulphate groups that can often be found in marine algae and animal tissue. Many bacteria generate extracellular polysaccharides, but sulphated ones have only been seen in cyanobacteria.

Maeda et al. showed that the sulphated polysaccharide in Synechocystis, which they named Synechan, helps the cyanobacterium to form buoyant aggregates by trapping oxygen bubbles in the slimy web of cells and polysaccharides. This suggests that a major purpose for the production of Synechan is buoyancy.

Previous studies on Synechocystis have shown that type IV pili, which decorate the surface of cyanobacteria, also play a role in forming blooms (Allen et al., 2019; Conradi et al., 2019). These retractable and adhesive protein fibres are important for motility, adhesion to substrates and DNA uptake (Schuergers and Wilde, 2015). The formation of blooms may require both type IV pili and Synechan – for example, the pili may help to export the polysaccharide outside the cell. Indeed, the activity of these protein fibres may be connected to the production of extracellular polysaccharides in filamentous cyanobacteria (Khayatan et al., 2015). A more obvious answer would be that pili help to build the aggregates by binding the cells with each other or with the extracellular polysaccharide. As with other kinds of bacteria (Adams et al., 2019), certain components of the pili may allow cyanobacteria from the same species to recognise each other and make initial contacts, which are then stabilised by building a mass of extracellular polysaccharide.

The ‘bubble flotation’ mechanism identified by Maeda et al. joins a range of known strategies that enable cyanobacteria to control their buoyancy, such as using gas vesicles or accumulating carbohydrate ballasts (Figure 1; Kromkamp and Walsby, 1990). Type IV pili on their own could also control the position of marine cyanobacteria in the water column by regulating viscous drag (Aguilo-Ferretjans et al., 2021). Extracellular polysaccharide appears to be a multipurpose asset for cyanobacteria, from floatation device to food storage, defence mechanism and mobility aid (Khayatan et al., 2015). Cyanobacteria can make surprisingly complex and diverse lifestyle choices, and the role of slime in their social life calls for further exploration.

Collective behaviour and lifestyle choices in single-celled cyanobacteria.

Bacteria can stay in suspension as individual cells, adhere collectively to surfaces to form biofilms, passively sediment, or flocculate to form suspended aggregates. Cyanobacteria are able to produce sulphated polysaccharides (yellow haze surrounding clumps of cells) that enable them to form floating aggregates. Maeda et al. discovered that the oxygen produced by the cyanobacteria becomes trapped in the network of polysaccharides and cells, enabling the microorganisms to form buoyant blooms. It is thought that specific protein fibres known as pili (represented as lines radiating from the cells) may act as an additional way to link cells to each other or onto surfaces. Some cyanobacteria also use sophisticated intracellular gas vesicles as floating aids.

It remains to be seen if Synechan production in nature would serve to segregate cyanobacteria away from other species, including dangerous predators; or whether it may help to build a floating microbial community where multiple, metabolically diverse species can cooperate. We know so little about the real life of Synechocystis outside the laboratory that both ideas are equally possible.

References

Article and author information

Author details

  1. Conrad W Mullineaux

    Conrad W Mullineaux is in the School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom

    For correspondence
    c.mullineaux@qmul.ac.uk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-9916
  2. Annegret Wilde

    Annegret Wilde is in the Institute of Biology III, University of Freiburg, Freiburg, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0935-8415

Publication history

  1. Version of Record published: June 16, 2021 (version 1)

Copyright

© 2021, Mullineaux and Wilde

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,004
    views
  • 211
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conrad W Mullineaux
  2. Annegret Wilde
(2021)
Bacterial Blooms: The social life of cyanobacteria
eLife 10:e70327.
https://doi.org/10.7554/eLife.70327

Further reading

    1. Microbiology and Infectious Disease
    Guoqi Li, Xiaohong Cao ... Shihua Wang
    Research Article

    The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.