SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence

  1. J Ignacio Gutierrez
  2. Gregory P Brittingham
  3. Yonca B Karadeniz
  4. Kathleen D Tran
  5. Arnob Dutta
  6. Alex S Holehouse
  7. Craig L Peterson
  8. Liam J Holt  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. New York University Langone Health, United States
  3. University of Massachusetts Medical School, United States
  4. University of Rhode Island, United States
  5. Washington University in St. Louis, United States

Abstract

It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.

Data availability

Simulation code and details can be found at:https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021RNA-seq R-code can be found at:https://github.com/gbritt/SWI_SNF_pH_Sensor_RNASeqRNA-seq datasets are depositied at GEO accession number GSE174687https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174687

The following data sets were generated

Article and author information

Author details

  1. J Ignacio Gutierrez

    Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9017-8384
  2. Gregory P Brittingham

    Institute for Systems Genetics, New York University Langone Health, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yonca B Karadeniz

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8299-551X
  4. Kathleen D Tran

    Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnob Dutta

    Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex S Holehouse

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4155-5729
  7. Craig L Peterson

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liam J Holt

    Institute for Systems Genetics, New York University Langone Health, New York, United States
    For correspondence
    Liam.Holt@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4002-0861

Funding

Becas Chile

  • J Ignacio Gutierrez

National Science Foundation (Graduate Research Fellows Program)

  • Gregory P Brittingham

Pershing Square Sohn Cancer Research Award

  • Liam J Holt

National Cancer Institute (R37 CA240765)

  • Liam J Holt

National Institute of General Medical Sciences (R01 GM132447)

  • Liam J Holt

American Cancer Society Cornelia T. Bailey Foundation Research Scholar Grant (RSG-19-073-01-TBE)

  • Liam J Holt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gutierrez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,604
    views
  • 394
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Ignacio Gutierrez
  2. Gregory P Brittingham
  3. Yonca B Karadeniz
  4. Kathleen D Tran
  5. Arnob Dutta
  6. Alex S Holehouse
  7. Craig L Peterson
  8. Liam J Holt
(2022)
SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence
eLife 11:e70344.
https://doi.org/10.7554/eLife.70344

Share this article

https://doi.org/10.7554/eLife.70344

Further reading

    1. Biochemistry and Chemical Biology
    Reto B Cola, Salome N Niethammer ... Tommaso Patriarchi
    Tools and Resources

    Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Caleb Chang, Grace Zhou, Yang Gao
    Research Article

    Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.