SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence
Abstract
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.
Data availability
Simulation code and details can be found at:https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021RNA-seq R-code can be found at:https://github.com/gbritt/SWI_SNF_pH_Sensor_RNASeqRNA-seq datasets are depositied at GEO accession number GSE174687https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174687
-
SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequenceNCBI Gene Expression Omnibus, GSE174687.
Article and author information
Author details
Funding
Becas Chile
- J Ignacio Gutierrez
National Science Foundation (Graduate Research Fellows Program)
- Gregory P Brittingham
Pershing Square Sohn Cancer Research Award
- Liam J Holt
National Cancer Institute (R37 CA240765)
- Liam J Holt
National Institute of General Medical Sciences (R01 GM132447)
- Liam J Holt
American Cancer Society Cornelia T. Bailey Foundation Research Scholar Grant (RSG-19-073-01-TBE)
- Liam J Holt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Gutierrez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,691
- views
-
- 401
- downloads
-
- 27
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cell Biology
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.
-
- Biochemistry and Chemical Biology
- Physics of Living Systems
For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.