SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence

  1. J Ignacio Gutierrez
  2. Gregory P Brittingham
  3. Yonca B Karadeniz
  4. Kathleen D Tran
  5. Arnob Dutta
  6. Alex S Holehouse
  7. Craig L Peterson
  8. Liam J Holt  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. New York University Langone Health, United States
  3. University of Massachusetts Medical School, United States
  4. University of Rhode Island, United States
  5. Washington University in St. Louis, United States

Abstract

It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.

Data availability

Simulation code and details can be found at:https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021RNA-seq R-code can be found at:https://github.com/gbritt/SWI_SNF_pH_Sensor_RNASeqRNA-seq datasets are depositied at GEO accession number GSE174687https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174687

The following data sets were generated

Article and author information

Author details

  1. J Ignacio Gutierrez

    Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9017-8384
  2. Gregory P Brittingham

    Institute for Systems Genetics, New York University Langone Health, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yonca B Karadeniz

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8299-551X
  4. Kathleen D Tran

    Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arnob Dutta

    Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex S Holehouse

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4155-5729
  7. Craig L Peterson

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liam J Holt

    Institute for Systems Genetics, New York University Langone Health, New York, United States
    For correspondence
    Liam.Holt@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4002-0861

Funding

Becas Chile

  • J Ignacio Gutierrez

National Science Foundation (Graduate Research Fellows Program)

  • Gregory P Brittingham

Pershing Square Sohn Cancer Research Award

  • Liam J Holt

National Cancer Institute (R37 CA240765)

  • Liam J Holt

National Institute of General Medical Sciences (R01 GM132447)

  • Liam J Holt

American Cancer Society Cornelia T. Bailey Foundation Research Scholar Grant (RSG-19-073-01-TBE)

  • Liam J Holt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Preprint posted: March 3, 2021 (view preprint)
  2. Received: May 19, 2021
  3. Accepted: February 6, 2022
  4. Accepted Manuscript published: February 7, 2022 (version 1)
  5. Version of Record published: March 2, 2022 (version 2)

Copyright

© 2022, Gutierrez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,511
    Page views
  • 372
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Ignacio Gutierrez
  2. Gregory P Brittingham
  3. Yonca B Karadeniz
  4. Kathleen D Tran
  5. Arnob Dutta
  6. Alex S Holehouse
  7. Craig L Peterson
  8. Liam J Holt
(2022)
SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence
eLife 11:e70344.
https://doi.org/10.7554/eLife.70344

Share this article

https://doi.org/10.7554/eLife.70344

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.