ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer

  1. Wentong Fang
  2. Chengheng Liao  Is a corresponding author
  3. Rachel Shi
  4. Jeremy M Simon
  5. Travis S Ptacek
  6. Giada Zurlo
  7. Youqiong Ye
  8. Leng Han
  9. Cheng Fan
  10. Lei Bao
  11. Christopher Llynard Ortiz
  12. Hong-Rui Lin
  13. Ujjawal Manocha
  14. Weibo Luo
  15. William Y Kim
  16. Lee-Wei Yang
  17. Qing Zhang  Is a corresponding author
  1. The First Affiliated Hospital of Nanjing Medical University, China
  2. University of Texas Southwestern Medical Center, United States
  3. University of North Carolina School of Medicine, United States
  4. The University of Alabama at Birmingham, United States
  5. Shanghai Jiao Tong University School of Medicine, China
  6. The University of Texas Health Science Center at Houston McGovern Medical School, United States
  7. Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Taiwan
  8. The University of Texas Southwestern Medical Center, United States
  9. National Tsing Hua University, Taiwan

Abstract

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia inducible factor (HIF) family members and positively regulated HIF1a activity in TNBC. Integrated ChIP-Seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1a on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1a co-regulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581 and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1a signaling, therefore serving as a potential therapeutic target for TNBC.

Data availability

•Sequencing data have been deposited in GEO under accession codes GSE175487

The following data sets were generated

Article and author information

Author details

  1. Wentong Fang

    The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0047-1198
  2. Chengheng Liao

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    chengheng.liao@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Shi

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy M Simon

    Neuroscience Center; Carolina Institute for Developmental Disabilities; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3906-1663
  5. Travis S Ptacek

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Giada Zurlo

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Youqiong Ye

    Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Leng Han

    The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheng Fan

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lei Bao

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher Llynard Ortiz

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3114-7369
  12. Hong-Rui Lin

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  13. Ujjawal Manocha

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Weibo Luo

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. William Y Kim

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Lee-Wei Yang

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3971-6386
  17. Qing Zhang

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    qing.zhang@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6595-8995

Funding

National Cancer Institute (R01CA211732)

  • Qing Zhang

National Cancer Institute (R01CA256833)

  • Qing Zhang

Cancer Prevention and Research Institute of Texas (RR190058)

  • Qing Zhang

American Cancer Society (RSG-18-059-01-TBE)

  • Qing Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were in compliance with National Institutes of Health guidelines and were approved by the University of Texas, Southwestern Medical Center Institutional Animal Care and Use Committee.

Copyright

© 2021, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,623
    views
  • 266
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wentong Fang
  2. Chengheng Liao
  3. Rachel Shi
  4. Jeremy M Simon
  5. Travis S Ptacek
  6. Giada Zurlo
  7. Youqiong Ye
  8. Leng Han
  9. Cheng Fan
  10. Lei Bao
  11. Christopher Llynard Ortiz
  12. Hong-Rui Lin
  13. Ujjawal Manocha
  14. Weibo Luo
  15. William Y Kim
  16. Lee-Wei Yang
  17. Qing Zhang
(2021)
ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer
eLife 10:e70412.
https://doi.org/10.7554/eLife.70412

Share this article

https://doi.org/10.7554/eLife.70412

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Cancer Biology
    Hyungtai Sim, Hyun Jung Park ... Murim Choi
    Research Article

    Clonal hematopoiesis of indeterminate potential (CHIP) allows estimation of clonal dynamics and documentation of somatic mutations in the hematopoietic system. Recent studies utilizing large cohorts of the general population and patients have revealed significant associations of CHIP burden with age and disease status, including in cancer and chronic diseases. An increasing number of cancer patients are treated with immune checkpoint inhibitors (ICIs), but the association of ICI response in non-small cell lung cancer (NSCLC) patients with CHIP burden remains to be determined. We collected blood samples from 100 metastatic NSCLC patients before and after ICI for high-depth sequencing of the CHIP panel and 63 samples for blood single-cell RNA sequencing. Whole exome sequencing was performed in an independent replication cohort of 180 patients. The impact of CHIP status on the immunotherapy response was not significant. However, metastatic lung cancer patients showed higher CHIP prevalence (44/100 for patients vs. 5/42 for controls; p = 0.01). In addition, lung squamous cell carcinoma (LUSC) patients showed increased burden of larger clones compared to lung adenocarcinoma (LUAD) patients (8/43 for LUSC vs. 2/50 for LUAD; p = 0.04). Furthermore, single-cell RNA-seq analysis of the matched patients showed significant enrichment of inflammatory pathways mediated by NF-κB in myeloid clusters of the severe CHIP group. Our findings suggest minimal involvement of CHIP mutation and clonal dynamics during immunotherapy but a possible role of CHIP as an indicator of immunologic response in NSCLC patients.