ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer

  1. Wentong Fang
  2. Chengheng Liao  Is a corresponding author
  3. Rachel Shi
  4. Jeremy M Simon
  5. Travis S Ptacek
  6. Giada Zurlo
  7. Youqiong Ye
  8. Leng Han
  9. Cheng Fan
  10. Lei Bao
  11. Christopher Llynard Ortiz
  12. Hong-Rui Lin
  13. Ujjawal Manocha
  14. Weibo Luo
  15. Yan Peng
  16. William Y Kim
  17. Lee-Wei Yang
  18. Qing Zhang  Is a corresponding author
  1. The First Affiliated Hospital of Nanjing Medical University, China
  2. University of Texas Southwestern Medical Center, United States
  3. University of North Carolina School of Medicine, United States
  4. The University of Alabama at Birmingham, United States
  5. Shanghai Jiao Tong University School of Medicine, China
  6. The University of Texas Health Science Center at Houston McGovern Medical School, United States
  7. Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Taiwan
  8. The University of Texas Southwestern Medical Center, United States
  9. Department of Pathology, University of Texas Southwestern Medical Center, United States
  10. National Tsing Hua University, Taiwan

Abstract

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia inducible factor (HIF) family members and positively regulated HIF1a activity in TNBC. Integrated ChIP-Seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1a on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1a co-regulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581 and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1a signaling, therefore serving as a potential therapeutic target for TNBC.

Data availability

•Sequencing data have been deposited in GEO under accession codes GSE175487

The following data sets were generated

Article and author information

Author details

  1. Wentong Fang

    The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0047-1198
  2. Chengheng Liao

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    chengheng.liao@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Shi

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy M Simon

    Neuroscience Center; Carolina Institute for Developmental Disabilities; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3906-1663
  5. Travis S Ptacek

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Giada Zurlo

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Youqiong Ye

    Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Leng Han

    The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheng Fan

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lei Bao

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher Llynard Ortiz

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3114-7369
  12. Hong-Rui Lin

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  13. Ujjawal Manocha

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Weibo Luo

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yan Peng

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. William Y Kim

    Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Lee-Wei Yang

    Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3971-6386
  18. Qing Zhang

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    qing.zhang@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6595-8995

Funding

National Cancer Institute (R01CA211732)

  • Qing Zhang

National Cancer Institute (R01CA256833)

  • Qing Zhang

Cancer Prevention and Research Institute of Texas (RR190058)

  • Qing Zhang

American Cancer Society (RSG-18-059-01-TBE)

  • Qing Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were in compliance with National Institutes of Health guidelines and were approved by the University of Texas, Southwestern Medical Center Institutional Animal Care and Use Committee.

Copyright

© 2021, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,644
    views
  • 270
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wentong Fang
  2. Chengheng Liao
  3. Rachel Shi
  4. Jeremy M Simon
  5. Travis S Ptacek
  6. Giada Zurlo
  7. Youqiong Ye
  8. Leng Han
  9. Cheng Fan
  10. Lei Bao
  11. Christopher Llynard Ortiz
  12. Hong-Rui Lin
  13. Ujjawal Manocha
  14. Weibo Luo
  15. Yan Peng
  16. William Y Kim
  17. Lee-Wei Yang
  18. Qing Zhang
(2021)
ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer
eLife 10:e70412.
https://doi.org/10.7554/eLife.70412

Share this article

https://doi.org/10.7554/eLife.70412

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.