STING mediates immune responses in the closest living relatives of animals

  1. Arielle Woznica  Is a corresponding author
  2. Ashwani Kumar
  3. Carolyn R Sturge
  4. Chao Xing
  5. Nicole King
  6. Julie K Pfeiffer  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2'3' cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2'3' cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.

Data availability

Raw sequencing reads and normalized gene counts have been deposited at the NCBI GEO under accession GSE174340

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Arielle Woznica

    UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Arielle.Woznica@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwani Kumar

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carolyn R Sturge

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6596-3356
  4. Chao Xing

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1838-0502
  5. Nicole King

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie K Pfeiffer

    UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Julie.Pfeiffer@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2973-4895

Funding

Howard Hughes Medical Institute (Hanna Gray Fellows Program)

  • Arielle Woznica

Howard Hughes Medical Institute (Faculty Scholars Program)

  • Julie K Pfeiffer

Howard Hughes Medical Institute

  • Nicole King

Pew Charitable Trusts (Pew Innovation Fund)

  • Nicole King
  • Julie K Pfeiffer

Burroughs Wellcome Fund (Investigators in the Pathogenesis of Infectious Diseases)

  • Julie K Pfeiffer

National Cancer Institute (1P30 CA142543)

  • Arielle Woznica
  • Julie K Pfeiffer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Woznica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,771
    views
  • 329
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arielle Woznica
  2. Ashwani Kumar
  3. Carolyn R Sturge
  4. Chao Xing
  5. Nicole King
  6. Julie K Pfeiffer
(2021)
STING mediates immune responses in the closest living relatives of animals
eLife 10:e70436.
https://doi.org/10.7554/eLife.70436

Share this article

https://doi.org/10.7554/eLife.70436

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.