STING mediates immune responses in the closest living relatives of animals

  1. Arielle Woznica  Is a corresponding author
  2. Ashwani Kumar
  3. Carolyn R Sturge
  4. Chao Xing
  5. Nicole King
  6. Julie K Pfeiffer  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2'3' cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2'3' cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.

Data availability

Raw sequencing reads and normalized gene counts have been deposited at the NCBI GEO under accession GSE174340

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Arielle Woznica

    UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Arielle.Woznica@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwani Kumar

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carolyn R Sturge

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6596-3356
  4. Chao Xing

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1838-0502
  5. Nicole King

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie K Pfeiffer

    UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Julie.Pfeiffer@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2973-4895

Funding

Howard Hughes Medical Institute (Hanna Gray Fellows Program)

  • Arielle Woznica

Howard Hughes Medical Institute (Faculty Scholars Program)

  • Julie K Pfeiffer

Howard Hughes Medical Institute

  • Nicole King

Pew Charitable Trusts (Pew Innovation Fund)

  • Nicole King
  • Julie K Pfeiffer

Burroughs Wellcome Fund (Investigators in the Pathogenesis of Infectious Diseases)

  • Julie K Pfeiffer

National Cancer Institute (1P30 CA142543)

  • Arielle Woznica
  • Julie K Pfeiffer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara Cherry, University of Pennsylvania, United States

Version history

  1. Preprint posted: May 14, 2021 (view preprint)
  2. Received: May 17, 2021
  3. Accepted: November 2, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Version of Record published: November 15, 2021 (version 2)

Copyright

© 2021, Woznica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,524
    views
  • 302
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arielle Woznica
  2. Ashwani Kumar
  3. Carolyn R Sturge
  4. Chao Xing
  5. Nicole King
  6. Julie K Pfeiffer
(2021)
STING mediates immune responses in the closest living relatives of animals
eLife 10:e70436.
https://doi.org/10.7554/eLife.70436

Share this article

https://doi.org/10.7554/eLife.70436

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.