Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling

Abstract

Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of β-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that β-catenin accumulates in the nucleus in a Ran dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the orthologue of Kap-β2/Transportin-1 (TNPO1), was required for β-catenin nuclear import. We further demonstrate direct binding between TNPO1 and β-catenin that is mediated by a conserved PY-NLS. Finally, using Xenopus secondary axis and TCF/LEF reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the NLS in β-catenin and its cognate NTR, our study suggests new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step towards therapeutics.

Data availability

Data generated or analyzed during this study are included in the manuscript and the supporting file.Source data file has been provided for Figure 1, 2B, 3C, 4B, 4C, 6B, 7, Figure 2-figure supplement 1, Figure 2- figure supplement 2.

Article and author information

Author details

  1. Woong Y Hwang

    Department of Pediatrics and Genetics, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0575-0033
  2. Valentyna Kostiuk

    Department of Pediatrics and Genetics, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Delfina P González

    Department of Pediatrics and Genetics, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6327-1348
  4. C Patrick Lusk

    Department of Cell Biology, Yale University, New Haven, United States
    For correspondence
    patrick.lusk@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4703-0533
  5. Mustafa Khokha

    Department of Pediatrics and Genetics, Yale University, New Haven, United States
    For correspondence
    Mustafa.khokha@yale.edu
    Competing interests
    Mustafa Khokha, is a co-founder of Victory Genomics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9846-7076

Funding

National Institutes of Health (2R01HL124402)

  • C Patrick Lusk
  • Mustafa Khokha

National Institutes of Health (T32GM07205)

  • Woong Y Hwang
  • Valentyna Kostiuk

National Institutes of Health (5F30HL143878)

  • Woong Y Hwang

National Institutes of Health (5F31HL149246)

  • Delfina P González

Paul and Daisy Soros Fellowships for New Americans

  • Woong Y Hwang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Xenopus tropicalis and Xenopus laevis were housed and cared for in our aquatics facility according to established protocols approved by the Yale Institutional Animal Care and Use Committee (IACUC, protocol number-2021-11035).

Reviewing Editor

  1. William I Weis, Stanford University, United States

Publication history

  1. Received: May 18, 2021
  2. Preprint posted: May 23, 2021 (view preprint)
  3. Accepted: October 26, 2022
  4. Accepted Manuscript published: October 27, 2022 (version 1)
  5. Version of Record published: November 15, 2022 (version 2)

Copyright

© 2022, Hwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 499
    Page views
  • 83
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Woong Y Hwang
  2. Valentyna Kostiuk
  3. Delfina P González
  4. C Patrick Lusk
  5. Mustafa Khokha
(2022)
Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling
eLife 11:e70495.
https://doi.org/10.7554/eLife.70495

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Ana J Caetano, Yushi Redhead ... Paul T Sharpe
    Research Article Updated

    The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.

    1. Cell Biology
    2. Developmental Biology
    Eunjin Cho, Xiangguo Che ... Tae-Hoon Lee
    Research Article

    Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC–MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.