Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes

  1. Maia Kinnebrew
  2. Giovanni Luchetti
  3. Ria Sircar
  4. Sara Frigui
  5. Lucrezia Vittoria Viti
  6. Tomoki Naito
  7. Francis Beckert
  8. Yasunori Saheki
  9. Christian Siebold
  10. Arun Radhakrishnan
  11. Rajat Rohatgi  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Oxford University, United Kingdom
  3. Nanyang Technological University, Singapore
  4. University of Texas Southwestern Medical Center, United States

Abstract

A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. To directly test the effect of PTCH1 on accessible cholesterol, we measured the transport activity of PTCH1 using an imaging-based assay to follow the kinetics of cholesterol extraction from the plasma membrane of live cells by methyl-β-cyclodextrin. PTCH1 depletes accessible cholesterol in the outer leaflet of the membrane in a manner regulated by its ligand Sonic Hedgehog and the transmembrane potassium gradient. We propose that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export. Our results show that proteins can change accessible cholesterol levels in membranes to regulate signaling reaction.

Data availability

No dataset was generated or used during this study (such as deep sequencing data, mass spectrometry data, structural coordinates or maps, genetic data or clinical trial data) that required deposition in a repository such as GenBank, the PDB, mass spec data repositories, or clinical data repositories. We have provided original, uncropped scans of immunoblots shown in Figures 2B, 4B, and Figure 3-figure supplement 1 in the Source Data Files. All other data generated are included in this study, with replicates and statistics described in the figure legends and methods.

Article and author information

Author details

  1. Maia Kinnebrew

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7344-8231
  2. Giovanni Luchetti

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ria Sircar

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Sara Frigui

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Lucrezia Vittoria Viti

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tomoki Naito

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8393-3601
  7. Francis Beckert

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Yasunori Saheki

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1229-6668
  9. Christian Siebold

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6635-3621
  10. Arun Radhakrishnan

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Arun Radhakrishnan, Arun Radhakrishnan is a reviewing editor for eLife..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7336
  11. Rajat Rohatgi

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rrohatgi@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7609-8858

Funding

Cancer Research UK (C20724)

  • Christian Siebold

Ministry of Education, Singapore (MOE-T2EP30120-0002)

  • Yasunori Saheki

National Science Foundation (Predoctoral Fellowship)

  • Maia Kinnebrew

Ford Foundation (Predoctoral Fellowship)

  • Giovanni Luchetti

Cancer Research UK (A26752)

  • Christian Siebold

European Research Council (647278)

  • Christian Siebold

National Institutes of Health (GM118082)

  • Rajat Rohatgi

National Institutes of Health (GM106078)

  • Rajat Rohatgi

National Institutes of Health (HL20948)

  • Arun Radhakrishnan

Welch Foundation (I-1793)

  • Arun Radhakrishnan

Leducq Foundation (19CVD04)

  • Arun Radhakrishnan

Ministry of Education, Singapore (MOE2017-T2-2-001)

  • Yasunori Saheki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kinnebrew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,683
    views
  • 583
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maia Kinnebrew
  2. Giovanni Luchetti
  3. Ria Sircar
  4. Sara Frigui
  5. Lucrezia Vittoria Viti
  6. Tomoki Naito
  7. Francis Beckert
  8. Yasunori Saheki
  9. Christian Siebold
  10. Arun Radhakrishnan
  11. Rajat Rohatgi
(2021)
Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes
eLife 10:e70504.
https://doi.org/10.7554/eLife.70504

Share this article

https://doi.org/10.7554/eLife.70504

Further reading

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.