1. Cell Biology
  2. Developmental Biology
Download icon

Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes

  1. Maia Kinnebrew
  2. Giovanni Luchetti
  3. Ria Sircar
  4. Sara Frigui
  5. Lucrezia Vittoria Viti
  6. Tomoki Naito
  7. Francis Beckert
  8. Yasunori Saheki
  9. Christian Siebold
  10. Arun Radhakrishnan
  11. Rajat Rohatgi  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Oxford University, United Kingdom
  3. Nanyang Technological University, Singapore
  4. University of Texas Southwestern Medical Center, United States
Research Advance
  • Cited 0
  • Views 508
  • Annotations
Cite this article as: eLife 2021;10:e70504 doi: 10.7554/eLife.70504

Abstract

A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. To directly test the effect of PTCH1 on accessible cholesterol, we measured the transport activity of PTCH1 using an imaging-based assay to follow the kinetics of cholesterol extraction from the plasma membrane of live cells by methyl-β-cyclodextrin. PTCH1 depletes accessible cholesterol in the outer leaflet of the membrane in a manner regulated by its ligand Sonic Hedgehog and the transmembrane potassium gradient. We propose that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export. Our results show that proteins can change accessible cholesterol levels in membranes to regulate signaling reaction.

Data availability

No dataset was generated or used during this study (such as deep sequencing data, mass spectrometry data, structural coordinates or maps, genetic data or clinical trial data) that required deposition in a repository such as GenBank, the PDB, mass spec data repositories, or clinical data repositories. We have provided original, uncropped scans of immunoblots shown in Figures 2B, 4B, and Figure 3-figure supplement 1 in the Source Data Files. All other data generated are included in this study, with replicates and statistics described in the figure legends and methods.

Article and author information

Author details

  1. Maia Kinnebrew

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7344-8231
  2. Giovanni Luchetti

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ria Sircar

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Sara Frigui

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Lucrezia Vittoria Viti

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tomoki Naito

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8393-3601
  7. Francis Beckert

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Yasunori Saheki

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1229-6668
  9. Christian Siebold

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6635-3621
  10. Arun Radhakrishnan

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Arun Radhakrishnan, Arun Radhakrishnan is a reviewing editor for eLife..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7336
  11. Rajat Rohatgi

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rrohatgi@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7609-8858

Funding

Cancer Research UK (C20724)

  • Christian Siebold

Ministry of Education, Singapore (MOE-T2EP30120-0002)

  • Yasunori Saheki

National Science Foundation (Predoctoral Fellowship)

  • Maia Kinnebrew

Ford Foundation (Predoctoral Fellowship)

  • Giovanni Luchetti

Cancer Research UK (A26752)

  • Christian Siebold

European Research Council (647278)

  • Christian Siebold

National Institutes of Health (GM118082)

  • Rajat Rohatgi

National Institutes of Health (GM106078)

  • Rajat Rohatgi

National Institutes of Health (HL20948)

  • Arun Radhakrishnan

Welch Foundation (I-1793)

  • Arun Radhakrishnan

Leducq Foundation (19CVD04)

  • Arun Radhakrishnan

Ministry of Education, Singapore (MOE2017-T2-2-001)

  • Yasunori Saheki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Duojia Pan, UT Southwestern Medical Center and HHMI, United States

Publication history

  1. Received: May 27, 2021
  2. Accepted: October 25, 2021
  3. Accepted Manuscript published: October 26, 2021 (version 1)

Copyright

© 2021, Kinnebrew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 508
    Page views
  • 207
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Aixin Song et al.
    Research Article Updated

    UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently, it was reported that UCH37 activity is stimulated by branched ubiquitin (Ub) chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and Nuclear Magnetic Resonance (NMR) structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal Ubs that emanate from a branched Ub. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear Ub chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome for the next round of substrate processing. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique Ub chain architecture is aided by a DUB.

    1. Cell Biology
    2. Neuroscience
    Domenica Ippolito et al.
    Research Article Updated

    Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.