AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development

  1. Eric Van Otterloo  Is a corresponding author
  2. Isaac Milanda
  3. Hamish Pike
  4. Jamie A Thompson
  5. Hong Li
  6. Kenneth L Jones
  7. Trevor Williams  Is a corresponding author
  1. University of Iowa, United States
  2. University of Colorado Anschutz Medical Campus, United States
  3. University of Oklahoma Health Sciences Center, United States

Abstract

The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.

Data availability

Sequencing data has been deposited in the Gene Expression Omnibus under accession code GSE199342.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Eric Van Otterloo

    Iowa Institute for Oral Health Research, University of Iowa, Iowa City, United States
    For correspondence
    eric-vanotterloo@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5958-5742
  2. Isaac Milanda

    Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hamish Pike

    Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jamie A Thompson

    Iowa Institute for Oral Health Research, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hong Li

    Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenneth L Jones

    Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahama City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trevor Williams

    Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    trevor.williams@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Dental and Craniofacial Research (2R01 DE12728)

  • Trevor Williams

National Institute of Dental and Craniofacial Research

  • Eric Van Otterloo

University of Iowa

  • Eric Van Otterloo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with all applicable guidelines and regulations, following the 'Guide for the Care and Use of Laboratory Animals of the National Institutes of Health'. The animal protocol utilized was approved by the Institutional Animal Care and Use Committee of the University of Colorado - Anschutz Medical Campus (#14) and the Institutional Animal Care and Use Committee of the University of Iowa (#9012197).

Copyright

© 2022, Van Otterloo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,086
    views
  • 322
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Van Otterloo
  2. Isaac Milanda
  3. Hamish Pike
  4. Jamie A Thompson
  5. Hong Li
  6. Kenneth L Jones
  7. Trevor Williams
(2022)
AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development
eLife 11:e70511.
https://doi.org/10.7554/eLife.70511

Share this article

https://doi.org/10.7554/eLife.70511

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.