Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP

  1. Sarah R Hansen
  2. David S White
  3. Mark Scalf
  4. Ivan R Corrêa Jr
  5. Lloyd M Smith
  6. Aaron A Hoskins  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. New England Biolabs, United States

Abstract

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used co-localization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.

Data availability

Source data files have been provided for Figure 1-Supplemental Figure 2. Due its large size, the source data for the single molecule microscopy experiments will be hosted by a campus web server and freely available for public download using Globus at the weblink belowhttps://app.globus.org/file-manager?origin_id=2b62cfc8-0c02-42ca-bb75-1a257d7b4284&origin_path=%2FWe have included this link in the manuscript text with the materials and methods section describing single molecule data collection.

Article and author information

Author details

  1. Sarah R Hansen

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. David S White

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0164-0125
  3. Mark Scalf

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Ivan R Corrêa Jr

    New England Biolabs, Ipswich, United States
    Competing interests
    Ivan R Corrêa, is employed by New England Biolabs.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3169-6878
  5. Lloyd M Smith

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6652-8639
  6. Aaron A Hoskins

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ahoskins@wisc.edu
    Competing interests
    Aaron A Hoskins, is conducting sponsored research with and a scientific advisor for Remix Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9777-519X

Funding

National Institutes of Health (R01 GM122735)

  • Aaron A Hoskins

National Institutes of Health (R35 GM136261)

  • Aaron A Hoskins

National Institutes of Health (R35 GM126914)

  • Lloyd M Smith

National Institutes of Health (T32 GM008505)

  • Sarah R Hansen

National Institutes of Health (F32 GM143780)

  • David S White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,521
    views
  • 325
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah R Hansen
  2. David S White
  3. Mark Scalf
  4. Ivan R Corrêa Jr
  5. Lloyd M Smith
  6. Aaron A Hoskins
(2022)
Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP
eLife 11:e70534.
https://doi.org/10.7554/eLife.70534

Share this article

https://doi.org/10.7554/eLife.70534

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.