Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP

  1. Sarah R Hansen
  2. David S White
  3. Mark Scalf
  4. Ivan R Corrêa Jr
  5. Lloyd M Smith
  6. Aaron A Hoskins  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. New England Biolabs, United States

Abstract

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used co-localization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.

Data availability

Source data files have been provided for Figure 1-Supplemental Figure 2. Due its large size, the source data for the single molecule microscopy experiments will be hosted by a campus web server and freely available for public download using Globus at the weblink belowhttps://app.globus.org/file-manager?origin_id=2b62cfc8-0c02-42ca-bb75-1a257d7b4284&origin_path=%2FWe have included this link in the manuscript text with the materials and methods section describing single molecule data collection.

Article and author information

Author details

  1. Sarah R Hansen

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. David S White

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0164-0125
  3. Mark Scalf

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Ivan R Corrêa Jr

    New England Biolabs, Ipswich, United States
    Competing interests
    Ivan R Corrêa, is employed by New England Biolabs.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3169-6878
  5. Lloyd M Smith

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6652-8639
  6. Aaron A Hoskins

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ahoskins@wisc.edu
    Competing interests
    Aaron A Hoskins, is conducting sponsored research with and a scientific advisor for Remix Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9777-519X

Funding

National Institutes of Health (R01 GM122735)

  • Aaron A Hoskins

National Institutes of Health (R35 GM136261)

  • Aaron A Hoskins

National Institutes of Health (R35 GM126914)

  • Lloyd M Smith

National Institutes of Health (T32 GM008505)

  • Sarah R Hansen

National Institutes of Health (F32 GM143780)

  • David S White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,543
    views
  • 325
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah R Hansen
  2. David S White
  3. Mark Scalf
  4. Ivan R Corrêa Jr
  5. Lloyd M Smith
  6. Aaron A Hoskins
(2022)
Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP
eLife 11:e70534.
https://doi.org/10.7554/eLife.70534

Share this article

https://doi.org/10.7554/eLife.70534

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.