Molecular determinants of phase separation for Drosophila DNA replication licensing factors

  1. Matthew W Parker  Is a corresponding author
  2. Jonchee A Kao
  3. Alvin Huang
  4. James M Berger
  5. Michael R Botchan
  1. The University of Texas Southwestern Medical Center, United States
  2. University of California, Berkeley, United States
  3. Johns Hopkins University School of Medicine, United States

Abstract

Liquid-liquid phase separation (LLPS) of intrinsically disordered regions (IDRs) in proteins can drive the formation of membraneless compartments in cells. Phase-separated structures enrich for specific partner proteins and exclude others. Previously, we showed that the IDRs of metazoan DNA replication initiators drive DNA-dependent phase separation in vitro and chromosome binding in vivo, and that initiator condensates selectively recruit replication-specific partner proteins (Parker et al., 2019). How initiator IDRs facilitate LLPS and maintain compositional specificity is unknown. Here, using D. melanogaster (Dm) Cdt1 as a model initiation factor, we show that phase separation results from a synergy between electrostatic DNA-bridging interactions and hydrophobic inter-IDR contacts. Both sets of interactions depend on sequence composition (but not sequence order), are resistant to 1,6-hexanediol, and do not depend on aromaticity. These findings demonstrate that distinct sets of interactions drive condensate formation and specificity across different phase-separating systems and advance efforts to predict IDR LLPS propensity and partner selection a priori.

Data availability

All data generated during this study is included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Matthew W Parker

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    matthew.parker@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7571-0010
  2. Jonchee A Kao

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1701-3265
  3. Alvin Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    James M Berger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-1240
  5. Michael R Botchan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Michael R Botchan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0459-5518

Funding

National Institute of General Medical Sciences (R01GM141045-01)

  • James M Berger
  • Michael R Botchan

National Cancer Institute (R01CA030490)

  • James M Berger
  • Michael R Botchan

National Institute of General Medical Sciences (F32GM116393)

  • Matthew W Parker

UC Berkeley Jessie Rabinowitz Award

  • Jonchee A Kao

Cancer Prevention and Research Institute of Texas (RR200070)

  • Matthew W Parker

Welch Foundation (I-2074-20210327)

  • Matthew W Parker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen P Bell, Howard Hughes Medical Institute, Massachusetts Institute of Technology, United States

Version history

  1. Preprint posted: April 12, 2021 (view preprint)
  2. Received: June 1, 2021
  3. Accepted: December 23, 2021
  4. Accepted Manuscript published: December 24, 2021 (version 1)
  5. Version of Record published: February 3, 2022 (version 2)

Copyright

© 2021, Parker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,063
    views
  • 303
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew W Parker
  2. Jonchee A Kao
  3. Alvin Huang
  4. James M Berger
  5. Michael R Botchan
(2021)
Molecular determinants of phase separation for Drosophila DNA replication licensing factors
eLife 10:e70535.
https://doi.org/10.7554/eLife.70535

Share this article

https://doi.org/10.7554/eLife.70535

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.

    1. Biochemistry and Chemical Biology
    Ornella Bimai, Ipsita Banerjee ... Derek T Logan
    Research Article

    A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer–tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.