3′HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression

  1. Pamela Himadewi
  2. Xue Qing David Wang
  3. Fan Feng
  4. Haley Gore
  5. Yushuai Liu
  6. Lei Yu
  7. Ryo Kurita
  8. Yukio Nakamura
  9. Gerd P Pfeifer
  10. Jie Liu  Is a corresponding author
  11. Xiaotian Zhang  Is a corresponding author
  1. Center for Epigenetics, Van Andel Research Institute, United States
  2. Department of Computational Medicine and Bioinformatics, University of Michigan, United States
  3. Cell and Development Biology, University of Michigan, United States
  4. Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Japan
  5. Cell Engineering Division, RIKEN BioResource Research Center, Japan
  6. Faculty of Medicine, University of Tsukuba, Japan
8 figures, 1 table and 3 additional files

Figures

Figure 1 with 3 supplements
3′HS1 modulates the hemoglobin gene expression in β-globin gene cluster.

(A) Genome-wide Hi-C interaction map and regulatory landscape around β-globin gene cluster in human HUDEP2 cells. ATAC-seq and CTCF track of HUDEP2 cells (Liu et al., 2018) is shown in the lower panel. Black cycle indicates the position of loops previously identified (Huang et al., 2017). Yellow dotted line indicates the three sub-TAD domains identified previously (Huang et al., 2017). HPFH1-7 deletion is illustrated and 3′HS1 is marked in blue shade. (B). The scheme of CTCF binding motif orientation engineering in HUDEP-2 cells. (C–E) In situ Hi-C contact map around β-globin gene cluster in HUDEP-2 cells of wild type (C), 3′HS1 deletion (D), and 3′HS1 inversion (E). CTCF CUT&RUN tracks of WT (Liu et al., 2018), 3′HS1 deletion and 3′HS1 inversion HUDEP-2 cells are shown on the top of corresponding Hi-C plots. All loops that called in the HUDEP2 cells of three genotypes are marked with circles of different colors. (F) The HiCCUPS quantification of loops interaction strength by q value in β-globin locus. Dotted line annotates q = 0.1. n.d.: not detected by HiCCUPS (q value > 0.1). (G) The composition of β-like globin HUDEP-2 cells with 3′HS1 deletion. qPCR measurement of β-like globin HUDEP-2 in two clones (B6 and D3) of Δ3′HS1 HUDEP-2 cells is shown. Mean ± SD is displayed, n = 3. (H) Left panel: relative expression of HBE, HBG (probe measures both HBG1 and HBG2), and HBB in the 3′HS1 deleted HUDEP-2 clone B6. Mean ± SD is displayed, n = 3. Right panel: relative expression of HBE, HBG (probe measures both HBG1 and HBG2), and HBB in the 3′HS1 inverted HUDEP-2 clone A2. Mean ± SD is displayed, n = 3. (I) The right panel shows the High-performance liquid chromatography (HPLC) for globin composition in Cas9-treated HUDEP-2 control and 3′HS1 deletion clone B6. (J) Flow cytometry plot of HbF in HUDEP-2 cell clones with 3′HS1 deletion (B6 and D3), 3′HS1 inversion (A2 and G3), and ΔHS5 clone.

Figure 1—figure supplement 1
CTCF binding site around β-globin gene cluster regulated β-globin gene expression.

(A) The experimental scheme of CTCF binding site deletion by CRISPR/Cas9. (B) CTCF binding site and chromatin landscape (H3K27ac and Dnase hypersensitivity footprint is shown) around β-globin genes. (C) The β-globin genes expression in the K562 clones with CBS deletion. (D) The β-globin genes expression in the bulk HUDEP-2 cells with HS5 and 3′HS1 deletions. N = 3. mean ± SD is displayed. n.s., not significant. *p<0.05, **p<0.01. Two-tailed t-test is performed. (E) Deletion fraction of 3′HS1 and HS5 in the bulk HUDEP-2 population tested in (D). (F, G) The Sanger sequencing validation result of Δ3′HS-1 clones and 3′HS-1 inversion clones as well as HS5 deletion clone (G). Homo indicates the deletion locus is homozygous. Insertion site is marked in italics with underlined text.

Figure 1—figure supplement 1—source data 1

The gel picture of paired guide deletion for HS5 and 3′HS1.

https://cdn.elifesciences.org/articles/70557/elife-70557-fig1-figsupp1-data1-v2.zip
Figure 1—figure supplement 2
3D genomics change in Δ3′HS-1 clones and 3′HS-1 inversion HUDEP-2 cell clones.

(A) The loop number called by mustache with parameter of q < 0.1 (Roayaei Ardakany et al., 2020). (B) The 3D genomics interaction landscape in β-globin gene cluster. Blue-shaded region indicates the sub-TAD domain between HS5 and 3′HS-1 CBS. Green-shaded region covers the interactions between LCR (HS1-4) and HBB interactions. (C) The copy number variance (CNV) profile of three cell clones inferred from Hi-C data by HINT (Wang et al.). (D, E) The Juicebox view of WT- Δ3′HS-1 clone B6 (D) and WT- 3′HS-1 inversion clone A2 (E) contact map. The CBS-associated chromosomal loops are circled out. LCR-HBB interaction is highlighted by rectangular box.

Figure 1—figure supplement 3
(A) The differentiation stage of HUDEP-2 cell clones used in Figure 1. (B) Immunofluorescence staining of HbF (top panel) and HBB (bottom panel) from clones used in Figure 1.
Figure 2 with 2 supplements
The induction of HbF in Δ3′HS1 cells is BCL11A independent.

(A) Volcano plot of differentially expressed genes in two Δ3′HS1 clones (B6 and D3) vs. two wild-type HUDEP-2 biological duplicates. Differentially expressed globin and olfactory receptor genes are labeled. (B) The volcano plot of differentially expressed genes in two 3′HS1 inversion clones (A2 and G3) vs. two wild-type HUDEP-2 biological duplicates. Differentially expressed globin and olfactory receptor genes are labeled. (C) Expression level of β-globin genes in Δ3′HS1 clones, 3′HS1 inversion clones, and wild-type HUDEP-2 cells. (D) Expression level of known fetal hemoglobin repressor genes in Δ3′HS1 clones, 3′HS1 inversion clones, and wild-type HUDEP-2 cells. (E) Western blot shows the level of BCL11A and ZBTB7A (LRF) in Δ3′HS1 clones, 3′HS1 inversion clones, Δ3′HS-5 clones, and wild-type HUDEP-2 cells. Refer to Figure 2—source data 1 for original blot picture. (F) The composition of β-like hemoglobin genes in the WT HDUEP-2 cells with BCL11A + 58 enhancer deleted with CRISPR/Cas9 and Δ3′HS1 HDUEP-2 cells with BCL11A + 58 enhancer deleted with CRISPR/Cas9.

Figure 2—source data 1

The immunoblot data of BCL11A, ZBTB7A, β-actin, β-globin, and γ-globin of clones displayed in Figure 2.

https://cdn.elifesciences.org/articles/70557/elife-70557-fig2-data1-v2.zip
Figure 2—figure supplement 1
BCL11A loss further promotes fetal hemoglobin induction in Δ3′HS-1 background.

(A) Integrated Genome Viewer (IGV) track view of ATAC-seq and H3K27ac ChIP-seq at β-globin gene locus of Δ3′HS1 HDUEP-2 cell clones, 3′HS1 inversion HDUEP-2 cells, and wild-type HUDEP-2 cells. GATA1, CTCF, and BCL11A CUT&RUN data is shown below the track. Regions highlighted in orange are paralogous HBG1/2 promoter. (B) Sanger sequencing of BCL11A +58 enhancer-disrupted clones. (C) qPCR quantification of BCL11A gene expression in +58 enhancer-deleted clones. (D) Flow cytometry measurement of HbF in WT and B6 clone after the deletion of BCL11A + 58 enhancer by CRISPR/Cas9. (E) Western blot quantification of BCL11A protein in BCL11A + 58 enhancer-deleted clones in WT and Δ3′HS-1 background. (F) The differentiation stage of BCL11A + 58 enhancer-disrupted HUDEP-2 cell clones profiled by flow cytometry of CD71 and CD235a.

Figure 2—figure supplement 1—source data 1

The immunoblot data of BCL11A, ZBTB7A, β-actin, β-globin, and γ-globin of clones displayed in Figure 2—figure supplement 1.

https://cdn.elifesciences.org/articles/70557/elife-70557-fig2-figsupp1-data1-v2.zip
Figure 2—figure supplement 2
Pomalidomide enhances fetal hemoglobin production induced by 3′HS-1 deletion.

(A) qRT-PCR quantification of BCL11A in the pomalidomide-treated WT and 3′-HS-1-deleted HUDEP2 cell clones. (B) Composition of β-like globin by qRT-PCR in clones treated with DMSO and 1 μM pomalidomide described in panel (A). (C) The flow cytometry plot of HbF in clones treated with DMSO and 1 μM pomalidomide described in panel (A). (D) Western blot of BCL11A, ZBTB7A, β-globin, and γ-globin clones treated with DMSO and 1 μM pomalidomide described in panel (A). (E) The differentiation stage of HUDEP-2 cell clones used in panel (A) profiled by flow cytometry of CD71 and CD235a.

Figure 2—figure supplement 2—source data 1

The immunoblot data of BCL11A, ZBTB7A, β-actin, β-globin, and γ-globin of clones displayed in Figure 2—figure supplement 2.

https://cdn.elifesciences.org/articles/70557/elife-70557-fig2-figsupp2-data1-v2.zip
Figure 3 with 1 supplement
The induction of HbF in Δ3′HS1 cells is modulated by HPFH enhancer.

(A) Upper panel: IGV view of ATAC-seq in primary human blood cells followed by GATA1 and CTCF ChIP-seq in HUDEP-2 cells around the β-globin locus. Lower panel: ATAC-seq of CD34+ hematopoietic stem and progenitor cell (HSPC), megakaryocyte–erythroid progenitor (MEP), and erythroblast is shown in the zoomed view for the OR52A1 region. Red-shaded area indicates the locus of OR52A1. HPFH 3' beak and δβ-thalassemia 3' break is annotated (Feingold and Forget, 1989). (B) The experimental scheme of hereditary persistence of fetal hemoglobin (HPFH) deletion in the 3'HS1 deletion background. (C) The composition of β-like globin Δ3′HS1 (clone B6) HUDEP-2 cells with GATA1 binding site and HPFH region deletion. Mean ± SD is displayed, n = 3. (D) Relative expression of HBE, HBG (probe measures both HBG1 and HBG2), and HBB in the Δ3’HS1 (clone B6) HUDEP-2 cells with GATA1 binding site and HPFH enhancer region deletion. Mean ± SD is displayed, n = 3. (E) The representative HbF flow plot of Δ3’HS1 (clone B6) HUDEP-2 cells with GATA1 binding site and HPFH enhancer region deletion. (F) Evolution conservation of OR52A1 GATA1 binding site in vertebrates. GATA1 binding motif is shown in the middle. The site in mouse and rat associated with human GATA1 binding is boxed out. (G) Chromatin landscape of mouse β-globin gene cluster in mouse erythroid cells MEL and G1-ER4. CTCF, GATA1, and TAL1 ChIP-seq is shown. Orange stripe highlights the mouse homolog of human OR52A1–Olfr68.

Figure 3—figure supplement 1
HPFH enhancer in edited HUDEP-2 cells.

(A) The v4C tracks generated by Juicebox from WT, Δ3′HS1 HUDEP2 clone B6, and 3′HS1 inversion clone A2. The HPFH enhancer region is highlighted in orange and viewpoint of 4C is highlighted in orange and eye symbol on HPFH enhancer and HBG2 promoter region, respectively. (B) The experimental scheme of deleting 48 kb region between HPFH enhancer and 3′HS1. The Sanger sequencing validation result of a Δ(HPFH-3’HS1) clone B5 is displayed in the lower panel. (C) HBG, HBE, and HBB expression in WT and Δ(HPFH-3’HS1) clone B5. Mean ± SD is shown. ***p<0.001, *p<0.05. t-test was performed to determine the p value. (D) The flow cytometry plot of HbF in WT and Δ(HPFH-3’HS1) clone B5.

Figure 4 with 1 supplement
Deletion of 3′HS1 induces HbF in primary adult HSPC.

(A) The experimental scheme for primary HSPC editing. (B) The deletion of 3′HS1 and HS5 in three CD34+ peripheral blood mononuclear cell (PBMC) HSPCs from three individual adult donors. Refer to Figure 4—source data 1 for original gel picture. (C) The HbF+ cell percentage at day 21 in three HSPCs from three individual adult donors after 3′HS1 and HS5 deletion. p-Value is calculated by one-tailed paired t-test. n.s., not significant, p=0.3659 in HS5 deletion vs. Cas9 by one-tailed paired t-test. (D) The reprehensive flow plot for HbF+ cells at day 21 in 3′HS1-deleted and HS5-deleted PBMC HSPC. The data is from donor #1. (E) The model of fetal hemoglobin regulation through 3′HS1.

Figure 4—source data 1

The gel picture of paired guide deletion for HS5 and 3′HS1 in HSPC.

https://cdn.elifesciences.org/articles/70557/elife-70557-fig4-data1-v2.zip
Figure 4—figure supplement 1
3’HS1 deletion in HSPC.

(A) Giemsa–Wright staining of differentiated erythroid cells from HSPC electroporated with Cas9, 3′HS-1 guide RNA pair, and HS5 deletion guide RNA pair at differentiation culture day 21. Orange arrow indicates the enucleated red blood cells, and blue arrows indicate the reticulocytes. (B) Differentiation stage of three HSPCs by flow cytometry of band 3 from different donors electroporated with Cas9, 3′HS-1 guide RNA pair, and HS5 deletion guide RNA pair at differentiation culture day 21.

Author response image 1
Author response image 2
Author response image 3
Author response image 4

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifierAdditional Information
AntibodyCTCF(rabbit polyclonal)AbcamAB70303WB(1:1000)
AntibodyBCL11A(rabbit polyclonal)AbcamAB191401WB(1:1000)
Antibodyβ-Actin(rabbit polyclonal)Proteintech20536-1-APWB(1:2000)
Antibodyβ-Globin(mouse monoclonal)Santa Cruz BiotechnologySC-21757WB(1:2000)
Antibodyγ-Globin(mouse monoclonal)Santa Cruz BiotechnologySC-21756WB(1:500)
AntibodyZBTB7A(mouse monoclonal)R&D systemsMAB3496WB(1:1000)
AntibodyHuman HbF-FITC(recombinant)Miltenyl Biotec130-108-241FC(1:100)
AntibodyHuman CD71-PE(mouse monoclonal)BioLegend334105FC(1:100)
AntibodyHuman CD235a-APC(mouse monoclonal)BD Biosciences561775FC(1:100)
AntibodyStarbright B700-conjugated goat α-rabbit IgG(goat polyclonal)Bio-Rad12004161WB(1:2000-1:5000)
AntibodyDyLight 800 goat α-mouse IgG(goat polyclonal)Bio-RadSTAR117D800GAWB(1:2000-1:10,000)
AntibodyAcetyl-histone H3 (Lys27)(rabbit polyclonal)Cell Signaling8173S2 µg per ChIP
Peptide, recombinant proteinSCFPeprotech300-07
Peptide, recombinant proteinFLT3LPeprotech300-19
Peptide, recombinant proteinTPOPeprotech300-18
Peptide, recombinant proteinEPOAmgenEPOGEN
Peptide, recombinant proteinIL-3Peprotech200-03
OtherSFEM IISTEMCELL Technologies09655
Chemical compound, drugDexamethasoneSigmaD2915
Chemical compound, drugDoxycyclineSigmaD9891
Peptide, recombinant proteinRecombinant human insulinSigmaI2643
Peptide, recombinant proteinHolo-transferrinSigmaT4132
Chemical compound, drugHeparinSigmaH3393
OtherHuman AB serumSigmaH6914
Peptide, recombinant proteinCas9 ProteinIDT1081058
Commercial assay or kitConcanavalin A BeadsBangs Laboratories, IncBP531
Peptide, recombinant proteinpA-MNaseGift from Steven Henikoff
Commercial assay or kitDynabeads protein AThermo Fisher Scientific1002D
Commercial assay or kitDynabeads MyOne Streptavidin T1Thermo Fisher Scientific65601
Chemical compound, drugProtease Inhibitor CocktailGenDEPOT50-101-5486
Cell line (Homo sapiens)HUDEP-2 cellsRiken Cell BankRCB4557
Cell line (Homo sapiens)K562 cellsATCCCCL-243
Biological sample (primary cells Homo sapiens)Human peripheral blood CD34+ HSPCsSTEMCELL Technologies70060.1CD34+ HSPC isolated from
individual donor. Sex is mixed.
Commercial assay or kitRapid RNA library kitSwift BiosciencesR2096
Commercial assay or kitNextera XT library preparation kitIlluminaFC-131-1024
Commercial assay or kitMinElute PCR purification kitQiagen28004
Commercial assay or kitAccel-NGS 2S Plus DNA library kitSwift Biosciences21096
Commercial assay or kit2S Combinatorial Dual Indexing KitSwift Biosciences28096
Commercial assay or kitHiC Next Generation Sequencing KitArima Genomics
Commercial assay or kitKAPA library quantification kitKAPA BiosystemsKK4844
Commercial assay or kitRNA clean & concentratorZymo ResearchR1013
OtherRaw and processed NGS sequencing dataThis paperGSE160425Raw and processed data
could be obtained from
the link :
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160425
OtherHUDEP-2 GATA1 CUT&RUNGEO: GSE104676GSM2805376
OtherHUDEP-2 CTCF ChIP-seqGEO: GSE104676GSM3671075
OtherHUDEP-2 BCL11A ChIP-seqGEO: GSE103445GSM2771529
OtherHematopoietic cells differentiation ATAC-seqCorces et al., 2016GSE74912
Sequence-based reagentsg3’HS1-3′SynthegoSynthesized guide RNAGAGUCUUGGGAUGGCUGAAG
Sequence-based reagentsg3’HS1-5′SynthegoSynthesized guide RNAGUCCAAGGCAGGACAUGUGU
Sequence-based reagentsgHS5-5′SynthegoSynthesized guide RNAGGCACCCACCUUCAAUCAAA
Sequence-based reagentsgHS5-3'SynthegoSynthesized guide RNAAGUCCUGCCAGAUAUAGGUC
Sequence-based reagentsgOR52A1-GATA1-5′SynthegoSynthesized guide RNAAUGUCUUAGUGGAUAACAGA
Sequence-based reagentsgOR52A1-GATA1-3′SynthegoSynthesized guide RNACAUAUGCUCACAGUAGGAGU
Sequence-based reagentsgHPFH-enhancer-5′SynthegoSynthesized guide RNAGGGCAUGUAGACUGUGAUGU
Sequence-based reagentsgHPFH-enhancer-3′:SynthegoSynthesized guide RNACAUAUGCUCACAGUAGGAGU
Sequence-based reagentsgBCL11A- + 58-5′:SynthegoSynthesized guide RNAGGACUGGCAGACCUCUCCAU
Sequence-based reagentsgBCL11A- + 58-3’:SynthegoSynthesized guide RNACUCUUACUUAUGCACACCUG
Sequence-based reagent3'HS1-deletion-genotyping forwardEurofins GenomicsPCR primerTCCCTGTGTGATTACTTGCTTAC
Sequence-based reagent3'HS1-deletion-genotyping reverseEurofins GenomicsPCR primerAGGTCATAACCATTCAGGTAAACT
Sequence-based reagent3'HS1-inversion-genotyping forwardEurofins GenomicsPCR primerTCCCTGTGTGATTACTTGCTTAC
Sequence-based reagent3'HS1-inversion-genotyping reverseEurofins GenomicsPCR primerGATGAACTACTTACCACTAGGGGTC
Sequence-based reagent3'HS1-WT-genotyping forwardEurofins GenomicsPCR primerTCCCTGTGTGATTACTTGCTTAC
Sequence-based reagent3'HS1-WT-genotyping reverseEurofins GenomicsPCR primerCTTCTGACCCCTAGTGGTGTC
Sequence-based reagentHPFH enhancer-deletion-genotyping forwardEurofins GenomicsPCR primerACAATGGCCATATGCTCACA
Sequence-based reagentHPFH enhancer-deletion-genotyping reverseEurofins GenomicsPCR primerGTCCAGGTGATTTTGCTGGT
Sequence-based reagentBCL11A_58 enhancer-deletion forwardEurofins GenomicsPCR primerGAACAGAGACCACTACTGGCAAT
Sequence-based reagentBCL11A_58 enhancer-deletion forwardEurofins GenomicsPCR primerCTCAGAAAAATGACAGCACCA
Sequence-based reagentHBB-qPCR forwardEurofins GenomicsPCR primerCTGAGGAGAAGTCTGCCGTTA
Sequence-based reagentHBB-qPCR reverseEurofins GenomicsPCR primerAGCATCAGGAGTGGACAGAT
Sequence-based reagentHBD-qPCR forwardEurofins GenomicsPCR primerGAGGAGAAGACTGCTGTCAATG
Sequence-based reagentHBD-qPCR reverseEurofins GenomicsPCR primerAGGGTAGACCACCAGTAATCTG
Sequence-based reagentHBE-qPCR forwardEurofins GenomicsPCR primerGCAAGAAGGTGCTGACTTC
Sequence-based reagentHBE-qPCR reverseEurofins GenomicsPCR primerACCATCACGTTACCCAGGAG
Sequence-based reagentHBG1/2-qPCR forwardEurofins GenomicsPCR primerTGGATGATCTCAAGGGCAC
Sequence-based reagentHBG1/2-qPCR reverseEurofins GenomicsPCR primerTCAGTGGTATCTGGAGGACA
Sequence-based reagentActB-qPCR forwardEurofins GenomicsPCR primerCCTGGCACCCAGCACAATGAAG
Sequence-based reagentActB-qPCR reverseEurofins GenomicsPCR primerAAGTCATAGTCCGCCTAGAAGC
Sequence-based reagentBCL11A-qPCR forwardEurofins GenomicsPCR primerAACCCCAGCACTTAAGCAAA
Sequence-based reagentBCL11A-qPCR reverseEurofins GenomicsPCR primerGGAGGTCATGATCCCCTTCT
Sequence-based reagent3'HS1 HDR templateGene UniversalCRISPR/Cas9 knock-in HDR templateAGACATAGAGAAAGTATATT
GTGTTTAAAAGACAGCTTC
TTTATAATTCTATAGAACTAA
AACATTCCTATTTGCCAAGG
CAGTGGAGTTTTTGCTGTT
CTTAGAACATAATTACTGAA
AGACACGCACACATGTCCT
GCCTTGGACAAAAAATTGT
ATGTCCATCCTTTAAAGGT
CATTCCTTTAATGGTCTTTT
CTGGACCTGACCCCTAGTG
GTAAGTAGTTCATCAAACTT
TCTTCCCTCCCTACTTCAGT
GATGCATAAGGCAGATCTG
CTTTAGTGTAAGCGAGGTC
AGGCCCTCAAGAGTCTTG
GGATGGCTGAAGATGTAA
GAACATTCTATAAGACTTG
TCCAAAGAACTGACTGTT
TAATGATTCTGAATATGCT
AGTTCAGAGAGAATCTAT
TTACCACAAACCTGAAG
Software, algorithmHiC-ProServant et al., 2015https://github.com/nservant/HiC-Pro
Software, algorithmJuicerDurand et al., 2016bhttps://github.com/theaidenlab/juicer/wiki
Software, algorithmJuiceboxDurand et al., 2016a; Durand et al., 2016bhttp://aidenlab.org/juicebox/
Software, algorithmHiNTWang et al., 2020https://github.com/parklab/HiNT
Software, algorithmSTARDobin et al., 2013https://github.com/alexdobin/STAR
Software, algorithmedgeRRobinson et al., 2010https://bioconductor.org/packages/edgeR/
Software, algorithmBowtie2Langmead and Salzberg, 2012http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Software, algorithmBWA-MEMBauer et al., 2013http://bio-bwa.sourceforge.net/
Software, algorithmSAMtoolsSankaran et al., 2009http://samtools.sourceforge.net/
Software, algorithmPicard Toolshttp://broadinstitute.github.io/picard/
Software, algorithmdeepToolsRamírez et al., 2014https://deeptools.readthedocs.io/en/develop/
Software, algorithmTrim Galorehttp://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Software, algorithmTrimmomaticBolger et al., 2014http://www.usadellab.org/cms/?page=trimmomatic

Additional files

Transparent reporting form
https://cdn.elifesciences.org/articles/70557/elife-70557-transrepform1-v2.docx
Source data 1

Blot and Gel images.

https://cdn.elifesciences.org/articles/70557/elife-70557-supp1-v2.zip
Supplementary file 1

Differential expressed genes in 3'HS1 deletion and inversion clones.

Differential expressed genes ( |log2Fold change| >1 and p-value <0.01) in 3'HS1 deletion and inversion clones.

https://cdn.elifesciences.org/articles/70557/elife-70557-supp2-v2.xlsx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pamela Himadewi
  2. Xue Qing David Wang
  3. Fan Feng
  4. Haley Gore
  5. Yushuai Liu
  6. Lei Yu
  7. Ryo Kurita
  8. Yukio Nakamura
  9. Gerd P Pfeifer
  10. Jie Liu
  11. Xiaotian Zhang
(2021)
3′HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression
eLife 10:e70557.
https://doi.org/10.7554/eLife.70557