Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36

Abstract

In humans and other holozoan organisms, the ribosomal protein eS30 is synthesized as a fusion protein with the ubiquitin-like protein FUBI. However, FUBI is not part of the mature 40S ribosomal subunit and cleaved off by an as-of-yet unidentified protease. How FUBI-eS30 processing is coordinated with 40S subunit maturation is unknown. To study the mechanism and importance of FUBI-eS30 processing, we expressed non-cleavable mutants in human cells, which affected late steps of cytoplasmic 40S maturation, including the maturation of 18S rRNA and recycling of late-acting ribosome biogenesis factors. Differential affinity purification of wild-type and non-cleavable FUBI-eS30 mutants identified the deubiquitinase USP36 as a candidate FUBI-eS30 processing enzyme. Depletion of USP36 by RNAi or CRISPRi indeed impaired FUBI-eS30 processing and moreover, purified USP36 cut FUBI-eS30 in vitro. Together, these data demonstrate the functional importance of FUBI-eS30 cleavage and identify USP36 as a novel protease involved in this process.

Data availability

Source data have been provided for Figure 5.

The following data sets were generated

Article and author information

Author details

  1. Jasmin van den Heuvel

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Caroline Ashiono

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Ludovic C Gillet

    Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1001-3265
  4. Kerstin Dörner

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Emanuel Wyler

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9884-1806
  6. Ivo Zemp

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Ulrike Kutay

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    For correspondence
    ulrike.kutay@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8257-7465

Funding

Swiss National Science Foundation (31003A_166565)

  • Ulrike Kutay

Swiss National Science Foundation (NCCR RNA and Disease)

  • Ulrike Kutay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Buszczak, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: May 20, 2021
  2. Preprint posted: May 22, 2021 (view preprint)
  3. Accepted: July 27, 2021
  4. Accepted Manuscript published: July 28, 2021 (version 1)
  5. Version of Record published: August 10, 2021 (version 2)

Copyright

© 2021, van den Heuvel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 858
    Page views
  • 151
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasmin van den Heuvel
  2. Caroline Ashiono
  3. Ludovic C Gillet
  4. Kerstin Dörner
  5. Emanuel Wyler
  6. Ivo Zemp
  7. Ulrike Kutay
(2021)
Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36
eLife 10:e70560.
https://doi.org/10.7554/eLife.70560

Further reading

    1. Biochemistry and Chemical Biology
    Tiantian Wei et al.
    Research Article Updated

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a critical regulator of cellular processes. We took a chemical biology approach to gain further insights into its function. We developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of structure-based optimization guided by several co-crystallized structures. C17 displayed an effect on DYRK2 at a single-digit nanomolar IC50 and showed outstanding selectivity for the human kinome containing 467 other human kinases. Using C17 as a chemical probe, we further performed quantitative phosphoproteomic assays and identified several novel DYRK2 targets, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and stromal interaction molecule 1 (STIM1). DYRK2 phosphorylated 4E-BP1 at multiple sites, and the combined treatment of C17 with AKT and MEK inhibitors showed synergistic 4E-BP1 phosphorylation suppression. The phosphorylation of STIM1 by DYRK2 substantially increased the interaction of STIM1 with the ORAI1 channel, and C17 impeded the store-operated calcium entry process. These studies collectively further expand our understanding of DYRK2 and provide a valuable tool to pinpoint its biological function.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Lukas P Feilen et al.
    Research Article

    Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer's disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme´s catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis.