The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis

  1. Chunbo Zhang
  2. Tianyu Zhong
  3. Yuanyuan Li
  4. Xianfeng Li
  5. Xiaopeng Yuan
  6. Linlin Liu
  7. Weilin Wu
  8. Jing Wu
  9. Ye Wu
  10. Rui Liang
  11. Xinhua Xie
  12. Chuanchuan Kang
  13. Yuwen Liu
  14. Zhonghong Lai
  15. Jianbo Xiao
  16. Zhixian Tang
  17. Riqun Jin
  18. Yan Wang
  19. Yongwei Xiao
  20. Jin Zhang
  21. Jian Li  Is a corresponding author
  22. Qian Liu  Is a corresponding author
  23. Zhongsheng Sun  Is a corresponding author
  24. Jianing Zhong  Is a corresponding author
  1. Nanchang University, China
  2. Gannan Medical University, China
  3. Beijing Institutes of Life Science, Chinese Academy of Sciences, China
  4. First Affiliated Hospital of Gannan Medical University, China
  5. Xiamen University, China
  6. School of Basic Medical Sciences, Nanchang University, China

Abstract

Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in multiple biological functions in cell development, differentiation, and transcriptional regulation. Tet1 deficient mice display the defects of murine glucose metabolism. However, the role of TET1 in metabolic homeostasis keeps unknown. Here, our finding demonstrates that hepatic TET1 physically interacts with SIRT1 via its C-terminal and activates its deacetylase activity, further regulating the acetylation-dependent cellular trans-localization of transcriptional factors PGC-1a and FOXO1, resulting in the activation of hepatic gluconeogenic gene expression that includes PPARGC1A, G6PC, and SLC2A4. Importantly, the hepatic gluconeogenic gene activation program induced by fasting is inhibited in Tet1 heterozygous mice livers. The AMPK activators metformin or AICAR-two compounds that mimic fasting-elevate hepatic gluconeogenic gene expression dependent on in turn activation of the AMPK-TET1-SIRT1 axis. Collectively, our study identifies TET1 as a SIRT1 coactivator and demonstrates that the AMPK-TET1-SIRT1 axis represents a potential mechanism or therapeutic target for glucose metabolism or metabolic diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chunbo Zhang

    Nanchang University, Nanchang, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9618-9415
  2. Tianyu Zhong

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuanyuan Li

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xianfeng Li

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaopeng Yuan

    Nanchang University, Nanchang, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Linlin Liu

    First Affiliated Hospital of Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Weilin Wu

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Wu

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ye Wu

    Nanchang University, Nanchang, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Rui Liang

    Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xinhua Xie

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Chuanchuan Kang

    First Affiliated Hospital of Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuwen Liu

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Zhonghong Lai

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Jianbo Xiao

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhixian Tang

    First Affiliated Hospital of Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Riqun Jin

    First Affiliated Hospital of Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Yan Wang

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Yongwei Xiao

    Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Jin Zhang

    School of Basic Medical Sciences, Nanchang University, Nanchang, China
    Competing interests
    The authors declare that no competing interests exist.
  21. Jian Li

    Xiamen University, Xiamen, China
    For correspondence
    jianli_204@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  22. Qian Liu

    Gannan Medical University, Ganzhou, China
    For correspondence
    liuqiangmu2017@126.com
    Competing interests
    The authors declare that no competing interests exist.
  23. Zhongsheng Sun

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    For correspondence
    sunzs@biols.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  24. Jianing Zhong

    Gannan Medical University, Ganzhou, China
    For correspondence
    zhongning_003@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2781-3437

Funding

National Natural Science Foundation of China (81760160)

  • Jianing Zhong

Startup Fund for Scholars of Gannan Medical University (QD201605)

  • Jianing Zhong

Innovative Team of Gannan Medical University (TD201708)

  • Jianing Zhong

The Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (XN201807)

  • Jianing Zhong

JiangXi Provincial Natural Science Foundation (20202BAB206086)

  • Jianing Zhong

JiangXi Provincial Natural Science Foundation (20171ACB21001)

  • Chunbo Zhang

JiangXi Provincial Natural Science Foundation (20171BCB23029)

  • Chunbo Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted in accordance with an approved protocol by the Institutional Animal Care and Ethics Committee of Xiamen University and Nanchang University.

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,520
    views
  • 313
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chunbo Zhang
  2. Tianyu Zhong
  3. Yuanyuan Li
  4. Xianfeng Li
  5. Xiaopeng Yuan
  6. Linlin Liu
  7. Weilin Wu
  8. Jing Wu
  9. Ye Wu
  10. Rui Liang
  11. Xinhua Xie
  12. Chuanchuan Kang
  13. Yuwen Liu
  14. Zhonghong Lai
  15. Jianbo Xiao
  16. Zhixian Tang
  17. Riqun Jin
  18. Yan Wang
  19. Yongwei Xiao
  20. Jin Zhang
  21. Jian Li
  22. Qian Liu
  23. Zhongsheng Sun
  24. Jianing Zhong
(2021)
The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis
eLife 10:e70672.
https://doi.org/10.7554/eLife.70672

Share this article

https://doi.org/10.7554/eLife.70672

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.