The roles of history, chance, and natural selection in the evolution of antibiotic resistance

  1. Alfonso Santos-Lopez  Is a corresponding author
  2. Christopher W Marshall  Is a corresponding author
  3. Allison L Haas
  4. Caroline B Turner
  5. Javier Rasero
  6. Vaughn S Cooper  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Marquette University, United States
  3. Loyola University, United States
  4. Carnegie Mellon University, United States

Abstract

History, chance, and selection are the fundamental factors that drive and constrain evolution. We designed evolution experiments to disentangle and quantify effects of these forces on the evolution of antibiotic resistance. Previously we showed that selection of the pathogen Acinetobacter baumannii in both structured and unstructured environments containing the antibiotic ciprofloxacin produced distinct genotypes and phenotypes, with lower resistance in biofilms as well as collateral sensitivity to b-lactam drugs (Santos-Lopez et al. 2019). Here we study how this prior history influences subsequent evolution in new b-lactam antibiotics. Selection was imposed by increasing concentrations of ceftazidime and imipenem and chance differences arose as random mutations among replicate populations. The effects of history were reduced by increasingly strong selection in new drugs, but not erased, at times revealing important contingencies. A history of selection in structured environments constrained resistance to new drugs and led to frequent loss of resistance to the initial drug by genetic reversions and not compensatory mutations. This research demonstrates that despite strong selective pressures of antibiotics leading to genetic parallelism, history can etch potential vulnerabilities to orthogonal drugs.

Data availability

All data generated or analyzed in this study are included in the manuscript, supporting files, or at https://github.com/sirmicrobe/chance_history_selection, where raw experimental values and statistical analysis code is shared. All sequences were deposited into NCBI under the BioProject number PRJNA485123 and accession numbers can be found in Supplemental Table S2

The following data sets were generated

Article and author information

Author details

  1. Alfonso Santos-Lopez

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    alfonsosantos2@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9163-9947
  2. Christopher W Marshall

    Marquette University, Milwaukee, United States
    For correspondence
    christopher.marshall@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Allison L Haas

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2154-4328
  4. Caroline B Turner

    Loyola University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Rasero

    Cognitive Axon Laboratory, Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vaughn S Cooper

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    vaughn.cooper@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-0765

Funding

National Institutes of Health (U01AI124302)

  • Vaughn S Cooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Santos-Lopez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,291
    views
  • 830
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alfonso Santos-Lopez
  2. Christopher W Marshall
  3. Allison L Haas
  4. Caroline B Turner
  5. Javier Rasero
  6. Vaughn S Cooper
(2021)
The roles of history, chance, and natural selection in the evolution of antibiotic resistance
eLife 10:e70676.
https://doi.org/10.7554/eLife.70676

Share this article

https://doi.org/10.7554/eLife.70676

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.