The roles of history, chance, and natural selection in the evolution of antibiotic resistance

  1. Alfonso Santos-Lopez  Is a corresponding author
  2. Christopher W Marshall  Is a corresponding author
  3. Allison L Haas
  4. Caroline B Turner
  5. Javier Rasero
  6. Vaughn S Cooper  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Marquette University, United States
  3. Loyola University, United States
  4. Carnegie Mellon University, United States

Abstract

History, chance, and selection are the fundamental factors that drive and constrain evolution. We designed evolution experiments to disentangle and quantify effects of these forces on the evolution of antibiotic resistance. Previously we showed that selection of the pathogen Acinetobacter baumannii in both structured and unstructured environments containing the antibiotic ciprofloxacin produced distinct genotypes and phenotypes, with lower resistance in biofilms as well as collateral sensitivity to b-lactam drugs (Santos-Lopez et al. 2019). Here we study how this prior history influences subsequent evolution in new b-lactam antibiotics. Selection was imposed by increasing concentrations of ceftazidime and imipenem and chance differences arose as random mutations among replicate populations. The effects of history were reduced by increasingly strong selection in new drugs, but not erased, at times revealing important contingencies. A history of selection in structured environments constrained resistance to new drugs and led to frequent loss of resistance to the initial drug by genetic reversions and not compensatory mutations. This research demonstrates that despite strong selective pressures of antibiotics leading to genetic parallelism, history can etch potential vulnerabilities to orthogonal drugs.

Data availability

All data generated or analyzed in this study are included in the manuscript, supporting files, or at https://github.com/sirmicrobe/chance_history_selection, where raw experimental values and statistical analysis code is shared. All sequences were deposited into NCBI under the BioProject number PRJNA485123 and accession numbers can be found in Supplemental Table S2

The following data sets were generated

Article and author information

Author details

  1. Alfonso Santos-Lopez

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    alfonsosantos2@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9163-9947
  2. Christopher W Marshall

    Marquette University, Milwaukee, United States
    For correspondence
    christopher.marshall@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Allison L Haas

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2154-4328
  4. Caroline B Turner

    Loyola University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Rasero

    Cognitive Axon Laboratory, Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vaughn S Cooper

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    vaughn.cooper@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-0765

Funding

National Institutes of Health (U01AI124302)

  • Vaughn S Cooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Santos-Lopez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,926
    views
  • 794
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alfonso Santos-Lopez
  2. Christopher W Marshall
  3. Allison L Haas
  4. Caroline B Turner
  5. Javier Rasero
  6. Vaughn S Cooper
(2021)
The roles of history, chance, and natural selection in the evolution of antibiotic resistance
eLife 10:e70676.
https://doi.org/10.7554/eLife.70676

Share this article

https://doi.org/10.7554/eLife.70676

Further reading

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.