RNA splicing programs define tissue compartments and cell types at single cell resolution

  1. Julia Eve Olivieri
  2. Roozbeh Dehghannasiri
  3. Peter L Wang
  4. SoRi Jang
  5. Antoine de Morree
  6. Serena Y Tan
  7. Jingsi Ming
  8. Angela Ruohao Wu
  9. Tabula Sapiens Consortium
  10. Stephen R Quake
  11. Mark A Krasnow
  12. Julia Salzman  Is a corresponding author
  1. Stanford University, United States
  2. Stanford University School of Medicine, United States
  3. The Hong Kong University of Science and Technology, Hong Kong
  4. The Hong Kong University of Science and Technology, China
  5. Chan Zuckerberg Biohub, United States

Abstract

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.

Data availability

The fastq files for the Tabula Sapiens data (Consortium et al., 2021) (both 10x and Smart-seq2) were downloaded from https://tabula-sapiens-portal.ds.czbiohub.org/. The pilot 2 individual is referred to as individual 1, and the pilot 1 individual is referred to as individual 2 in this manuscript. Pancreas data was removed from individual 2. Cell type annotations were downloaded on March 19th, 2021, and the "ground truth" column was used as the within-tissue-compartment cell type. The Tabula Muris data was downloaded from a public AWS S3 bucket according to https://registry.opendata.aws/tabula-muris-senis/. The P1 (30-M-2) mouse is referred to as individual 1 and P2 (30-M-4) is referred to as individual 2 in this manuscript. Compartment annotations were assigned based on knowledge of cell type. The fastq files for the Tabula Microcebus mouse lemur data were downloaded from https://tabula-microcebus.ds.czbiohub.org. Lemurs 4 and 2 are referred to as individuals 1 and and 2, respectively, in this manuscript. The propagated_cell_ontology_class column was used as the within-tissue-compartment cell type. Because tissue compartments in the mouse lemur were annotated more finely, we collapsed the lymphoid, myeloid, and megakaryocyte-erythroid compartments into the immune compartment.Human and mouse unselected spermatogenesis data was downloaded from the SRA databases with accession IDs SRR6459190 (AdultHuman_17-3), SRR6459191 (AdultHuman_17-4), and SRR6459192 (AdultHuman_17-5) for human, and accession IDs SRR6459155 (AdultMouse-Rep1), SRR6459156 (AdultMouse-Rep2), and SRR6459157 (AdultMouse-Rep3) for mouse. The files containing SpliZ values can be accessed at the following FigShare repository: DOI: 10.6084/m9.figshare.14531721.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Julia Eve Olivieri

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0850-5498
  2. Roozbeh Dehghannasiri

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7413-3437
  3. Peter L Wang

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9651-3860
  4. SoRi Jang

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Antoine de Morree

    Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8316-4531
  6. Serena Y Tan

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jingsi Ming

    The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Angela Ruohao Wu

    The Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tabula Sapiens Consortium

  10. Stephen R Quake

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark A Krasnow

    Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Julia Salzman

    Department of Biochemistry, Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
    For correspondence
    julia.salzman@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7630-3436

Funding

National Science Foundation (DGE-1656518)

  • Julia Eve Olivieri

National Institute of General Medical Sciences (R01 GM116847)

  • Julia Salzman

National Science Foundation (MCB1552196)

  • Julia Salzman

National Institutes of Health (T15 LM7033-36)

  • Roozbeh Dehghannasiri

National Cancer Institute (R25 CA180993)

  • Roozbeh Dehghannasiri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gene W Yeo, University of California, San Diego, United States

Version history

  1. Preprint posted: May 2, 2021 (view preprint)
  2. Received: May 26, 2021
  3. Accepted: September 10, 2021
  4. Accepted Manuscript published: September 13, 2021 (version 1)
  5. Version of Record published: November 2, 2021 (version 2)

Copyright

© 2021, Olivieri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,466
    views
  • 722
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Eve Olivieri
  2. Roozbeh Dehghannasiri
  3. Peter L Wang
  4. SoRi Jang
  5. Antoine de Morree
  6. Serena Y Tan
  7. Jingsi Ming
  8. Angela Ruohao Wu
  9. Tabula Sapiens Consortium
  10. Stephen R Quake
  11. Mark A Krasnow
  12. Julia Salzman
(2021)
RNA splicing programs define tissue compartments and cell types at single cell resolution
eLife 10:e70692.
https://doi.org/10.7554/eLife.70692

Share this article

https://doi.org/10.7554/eLife.70692

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Seo-Gyeong Bae, Guo Nan Yin ... Jihwan Park
    Research Article

    Erectile dysfunction (ED) affects a significant proportion of men aged 40–70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.

    1. Computational and Systems Biology
    Rebecca A Deek, Siyuan Ma ... Hongzhe Li
    Review Article

    Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.