Plant trans-golgi network/early endosome pH regulation requires cation chloride cotransporter (CCC1)

  1. Daniel Walter McKay
  2. Heather E McFarlane
  3. Yue Qu
  4. Apriadi Situmorang
  5. Matthew Gilliham
  6. Stefanie Wege  Is a corresponding author
  1. University of Adelaide, Australia
  2. University of Toronto, Canada

Abstract

Plant cells maintain a low luminal pH in the Trans-Golgi-Network/Early Endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified - a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis Cation Chloride Cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2-7. Original images files can be accesses here: https://doi.org/10.25909/17256545https://doi.org/10.25909/17256515https://doi.org/10.25909/17256467https://doi.org/10.25909/17256428

Article and author information

Author details

  1. Daniel Walter McKay

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, Australia
    Competing interests
    No competing interests declared.
  2. Heather E McFarlane

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    Heather E McFarlane, Reviewing editor, eLife.
  3. Yue Qu

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, Australia
    Competing interests
    No competing interests declared.
  4. Apriadi Situmorang

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, Australia
    Competing interests
    No competing interests declared.
  5. Matthew Gilliham

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Adelaide, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-3078
  6. Stefanie Wege

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, Australia
    For correspondence
    stefanie.wege@adelaide.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7232-5889

Funding

Australian Research Council (DE160100804)

  • Stefanie Wege

Australian Research Council (FT130100709)

  • Matthew Gilliham

Australian Research Council (CE140100008)

  • Matthew Gilliham

Australian Research Council (DE170100054)

  • Heather E McFarlane

Canada Research Chairs Program

  • Heather E McFarlane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, McKay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,730
    views
  • 312
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Walter McKay
  2. Heather E McFarlane
  3. Yue Qu
  4. Apriadi Situmorang
  5. Matthew Gilliham
  6. Stefanie Wege
(2022)
Plant trans-golgi network/early endosome pH regulation requires cation chloride cotransporter (CCC1)
eLife 11:e70701.
https://doi.org/10.7554/eLife.70701

Share this article

https://doi.org/10.7554/eLife.70701

Further reading

    1. Plant Biology
    Zongju Yang, Tianqi Bai ... Chen Chen
    Research Article

    As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.

    1. Plant Biology
    Yuanyuan Bu, Xingye Dong ... Shenkui Liu
    Research Article Updated

    Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.