Abstract

Management of salivary gland hypofunction caused by irradiation (IR) therapy for head and neck cancer remains lack of effective treatments. Salivary glands, especially the parotid gland, actively uptake dietary nitrate and secrete it into saliva. Here, we investigated the effect of dietary nitrate on the prevention and treatment of IR-induced parotid gland hypofunction in miniature pigs, and elucidated the underlying mechanism in human parotid gland cells (hPGCs). We found that nitrate administration prevented IR-induced parotid gland damage in a dose-dependent manner, by maintaining the function of irradiated parotid gland tissue. Nitrate could increase sialin expression, a nitrate transporter expressed in the parotid gland, making the nitrate-sialin feedback loop that facilitates nitrate influx into cells for maintaining cell proliferation and inhibiting apoptosis. Furthermore, nitrate enhanced cell proliferation via the epidermal growth factor receptor (EGFR)-protein kinase B (AKT)-mitogen-activated protein kinase (MAPK) signaling pathway in irradiated parotid gland tissue. Collectively, nitrate effectively prevented IR-induced xerostomia via the EGFR–AKT-MAPK signaling pathway. Dietary nitrate supplementation may provide a novel, safe, and effective way to resolve IR-induce xerostomia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for: Figure 1G, Figure 2E, Figure 3A-D, and Figure 6 A,C,D and E, available on Dryad Digital Repository (doi:10.5061/dryad.fn2z34ttq).

The following data sets were generated

Article and author information

Author details

  1. Xiaoyu Feng

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhifang Wu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Junji Xu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yipu Xu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bin Zhao

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Baoxing Pang

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xingmin Qu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liang Hu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Lei Hu

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhipeng Fan

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Luyuan Jin

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Dengsheng Xia

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Shimin Chang

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Jingsong Wang

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Chunmei Zhang

    Capital Medical University School of Stomatology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Songlin Wang

    Capital Medical University School of Stomatology, Beijing, China
    For correspondence
    slwang@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7066-2654

Funding

National Natural Science Foundation of China (82030031)

  • Songlin Wang

National Natural Science Foundation of China (91649124)

  • Songlin Wang

National Natural Science Foundation of China (81600883)

  • Songlin Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wafik S El-Deiry, Brown University, United States

Ethics

Animal experimentation: Animal studies were conducted according to the NIH's Guide for the Care and Use of Laboratory Animals, and approved by the Animal Care and Use Committee of Capital Medical University

Human subjects: Human parotid gland biopsy sample was obtained under a protocol approved by the ethics committee of Beijing Stomatological Hospital, Capital Medical University

Version history

  1. Received: May 26, 2021
  2. Accepted: September 22, 2021
  3. Accepted Manuscript published: September 28, 2021 (version 1)
  4. Version of Record published: November 2, 2021 (version 2)

Copyright

© 2021, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,037
    views
  • 234
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoyu Feng
  2. Zhifang Wu
  3. Junji Xu
  4. Yipu Xu
  5. Bin Zhao
  6. Baoxing Pang
  7. Xingmin Qu
  8. Liang Hu
  9. Lei Hu
  10. Zhipeng Fan
  11. Luyuan Jin
  12. Dengsheng Xia
  13. Shimin Chang
  14. Jingsong Wang
  15. Chunmei Zhang
  16. Songlin Wang
(2021)
Dietary nitrate supplementation prevents radiotherapy-induced xerostomia
eLife 10:e70710.
https://doi.org/10.7554/eLife.70710

Share this article

https://doi.org/10.7554/eLife.70710

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.