Elevated FBXO45 promotes liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1 upregulation

  1. Xiao-Tong Lin
  2. Hong-Qiang Yu
  3. Lei Fang
  4. Ye Tan
  5. Ze-Yu Liu
  6. Di Wu
  7. Jie Zhang
  8. Hao-Jun Xiong
  9. Chuan-Ming Xie  Is a corresponding author
  1. Third Military Medical University (Army Medical University) Southwest Hospital, China

Abstract

Dysregulation of tumor-relevant proteins may contribute to human hepatocellular carcinoma (HCC) tumorigenesis. FBXO45 is an E3 ubiquitin ligase that is frequently elevated expression in human HCC. However, it remains unknown whether FBXO45 is associated with hepatocarcinogenesis and how to treat HCC patients with high FBXO45 expression. Here, IHC and qPCR analysis revealed that FBXO45 protein and mRNA were highly expressed in 54.3% (57 of 105) and 52.2% (132 of 253) of the HCC tissue samples, respectively. Highly expressed FBXO45 promoted liver tumorigenesis in transgenic mice. Mechanistically, FBXO45 promoted IGF2BP1 ubiquitination at the Lys190 and Lys450 sites and subsequent activation, leading to the upregulation of PLK1 expression and the induction of cell proliferation and liver tumorigenesis in vitro and in vivo. PLK1 inhibition or IGF2BP1 knockdown significantly blocked FBXO45-driven liver tumorigenesis in FBXO45 transgenic mice, primary cells and HCCs. Furthermore, IHC analysis on HCC tissue samples revealed a positive association between the hyperexpression of FBXO45 and PLK1/IGF2BP1, and both had positive relationship with poor survival in HCC patients. Thus, FBXO45 plays an important role in promoting liver tumorigenesis through IGF2BP1 ubiquitination and activation, and subsequent PLK1 upregulation, suggesting a new strategy for treating HCC by targeting FBXO45/IGF2BP1/PLK1 axis.

Data availability

All data analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures and Figure supplements contain images of gels or blots. Source data files have been provided for the original files of the gels or blots,named as"Source data 1(blot images)". Source data files have been provided for the clinical and pathological data for HCC patients, namedas"Figure 1-source data 1". Source data files have been provided for interacted proteins or ubiquitinated proteins, namedas"Supplementary file 4. FBXO45-interacting proteins identified by Co IP-MS".

The following previously published data sets were used

Article and author information

Author details

  1. Xiao-Tong Lin

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hong-Qiang Yu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lei Fang

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ye Tan

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ze-Yu Liu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Di Wu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jie Zhang

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao-Jun Xiong

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Chuan-Ming Xie

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    For correspondence
    cmxie@tmmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4362-6612

Funding

Third Military Medical University (4174C6)

  • Chuan-Ming Xie

National Natural Science Foundation of China (32071294)

  • Chuan-Ming Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Haim Werner, Sackler School of Medicine, Tel Aviv University, Israel

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Army Medical University and complied with all relevant ethical regulations.(AMUWEC2020936).

Human subjects: All human subjects were approved by the Ethics Committee of Southwest Hospital, and all of the patients provided informed consent. Certificate NO. KY2020127.

Version history

  1. Received: May 26, 2021
  2. Accepted: November 14, 2021
  3. Accepted Manuscript published: November 15, 2021 (version 1)
  4. Version of Record published: December 3, 2021 (version 2)

Copyright

© 2021, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 989
    views
  • 218
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Tong Lin
  2. Hong-Qiang Yu
  3. Lei Fang
  4. Ye Tan
  5. Ze-Yu Liu
  6. Di Wu
  7. Jie Zhang
  8. Hao-Jun Xiong
  9. Chuan-Ming Xie
(2021)
Elevated FBXO45 promotes liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1 upregulation
eLife 10:e70715.
https://doi.org/10.7554/eLife.70715

Share this article

https://doi.org/10.7554/eLife.70715

Further reading

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.