1. Biochemistry and Chemical Biology
  2. Cancer Biology
Download icon

Elevated FBXO45 promotes liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1 upregulation

  1. Xiao-Tong Lin
  2. Hong-Qiang Yu
  3. Lei Fang
  4. Ye Tan
  5. Ze-Yu Liu
  6. Di Wu
  7. Jie Zhang
  8. Hao-Jun Xiong
  9. Chuan-Ming Xie  Is a corresponding author
  1. Third Military Medical University (Army Medical University) Southwest Hospital, China
Research Article
  • Cited 0
  • Views 384
  • Annotations
Cite this article as: eLife 2021;10:e70715 doi: 10.7554/eLife.70715

Abstract

Dysregulation of tumor-relevant proteins may contribute to human hepatocellular carcinoma (HCC) tumorigenesis. FBXO45 is an E3 ubiquitin ligase that is frequently elevated expression in human HCC. However, it remains unknown whether FBXO45 is associated with hepatocarcinogenesis and how to treat HCC patients with high FBXO45 expression. Here, IHC and qPCR analysis revealed that FBXO45 protein and mRNA were highly expressed in 54.3% (57 of 105) and 52.2% (132 of 253) of the HCC tissue samples, respectively. Highly expressed FBXO45 promoted liver tumorigenesis in transgenic mice. Mechanistically, FBXO45 promoted IGF2BP1 ubiquitination at the Lys190 and Lys450 sites and subsequent activation, leading to the upregulation of PLK1 expression and the induction of cell proliferation and liver tumorigenesis in vitro and in vivo. PLK1 inhibition or IGF2BP1 knockdown significantly blocked FBXO45-driven liver tumorigenesis in FBXO45 transgenic mice, primary cells and HCCs. Furthermore, IHC analysis on HCC tissue samples revealed a positive association between the hyperexpression of FBXO45 and PLK1/IGF2BP1, and both had positive relationship with poor survival in HCC patients. Thus, FBXO45 plays an important role in promoting liver tumorigenesis through IGF2BP1 ubiquitination and activation, and subsequent PLK1 upregulation, suggesting a new strategy for treating HCC by targeting FBXO45/IGF2BP1/PLK1 axis.

Data availability

All data analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures and Figure supplements contain images of gels or blots. Source data files have been provided for the original files of the gels or blots,named as"Source data 1(blot images)". Source data files have been provided for the clinical and pathological data for HCC patients, namedas"Figure 1-source data 1". Source data files have been provided for interacted proteins or ubiquitinated proteins, namedas"Supplementary file 4. FBXO45-interacting proteins identified by Co IP-MS".

The following previously published data sets were used

Article and author information

Author details

  1. Xiao-Tong Lin

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hong-Qiang Yu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lei Fang

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ye Tan

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ze-Yu Liu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Di Wu

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jie Zhang

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao-Jun Xiong

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Chuan-Ming Xie

    Third Military Medical University (Army Medical University) Southwest Hospital, Chongqing, China
    For correspondence
    cmxie@tmmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4362-6612

Funding

Third Military Medical University (4174C6)

  • Chuan-Ming Xie

National Natural Science Foundation of China (32071294)

  • Chuan-Ming Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Army Medical University and complied with all relevant ethical regulations.(AMUWEC2020936).

Human subjects: All human subjects were approved by the Ethics Committee of Southwest Hospital, and all of the patients provided informed consent. Certificate NO. KY2020127.

Reviewing Editor

  1. Haim Werner, Sackler School of Medicine, Tel Aviv University, Israel

Publication history

  1. Received: May 26, 2021
  2. Accepted: November 14, 2021
  3. Accepted Manuscript published: November 15, 2021 (version 1)
  4. Version of Record published: December 3, 2021 (version 2)

Copyright

© 2021, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 384
    Page views
  • 73
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marella D Canny, Michael Latham
    Research Article

    The Mre11-Rad50-Nbs1 protein complex is one of the first responders to DNA double strand breaks. Studies have shown that the catalytic activities of the evolutionarily conserved Mre11-Rad50 (MR) core complex depend on an ATP-dependent global conformational change that takes the macromolecule from an open, extended structure in the absence of ATP to a closed, globular structure when ATP is bound. We have previously identified an additional ‘partially open’ conformation using Luminescence Resonance Energy Transfer (LRET) experiments. Here, a combination of LRET and the molecular docking program HADDOCK was used to further investigate this partially open state and identify three conformations of MR in solution: closed, partially open, and open, which are in addition to the extended, apo conformation. Mutants disrupting specific Mre11-Rad50 interactions within each conformation were used in nuclease activity assays on a variety of DNA substrates to help put the three states into a functional perspective. LRET data collected on MR bound to DNA demonstrate that the three conformations also exist when nuclease substrates are bound. These models were further supported with SAXS data which corroborate the presence of multiple states in solution. Together, the data suggest a mechanism for the nuclease activity of the MR complex along the DNA.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Lindsay B Case et al.
    Research Article Updated

    Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas (‘Cas’) and Focal adhesion kinase (‘FAK’) undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.